| 1 | Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. Journal of Differential Equations, 1984, 52 (3): 378- 406 |
| 2 | Georgiev V , Takamura H , Yi Z . The lifespan of solutions to nonlinear systems of a high-dimensional wave equation. Nonlinear Analysis, 2006, 64 (10): 2215- 2250 |
| 3 | Kato T . Blow up of solutions of some nonlinear hyperbolic equations. Communications on Pure & Applied Mathematics, 2010, 33 (4): 501- 505 |
| 4 | Strauss W A . Nonlinear scattering theory at low energy. Journal of Functional Analysis, 1981, 43 (3): 281- 293 |
| 5 | Zhou Y . Life span of classical solutions to utt + uxx=|u|1+α. Chinese Annals of Mathematics, 1992, (2): 230- 243 |
| 6 | Lindblad H . Blow-up for solutions of □u=|u|p with small initial data. Communications in Partial Differential Equations, 1990, 15 (6): 757- 821 |
| 7 | Zhou Y , Han W . Blow-up of solutions to semilinear wave equations with variable coefficients and boundary. Journal of Mathematical Analysis and Applications, 2011, 374 (2): 585- 601 |
| 8 | Takamura H . Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations. Nonlinear Analysis:Theory, Methods & Applications, 2015, 125: 227- 240 |
| 9 | 李卓然.一类半线性波动方程解的爆破性质[D].杭州:浙江大学, 2017 |
| 9 | Li Z R. Blow up Properties of Solutions for a Class of Semilinear Wave Equations[D]. Hangzhou: Zhejiang University, 2017 |
| 10 | Zhou Y . Life span of classical solutions to □u=|u|p in two space dimensions. Chinese Annals of Mathematics, 1993, 14 (2): 225- 236 |
| 11 | Lai N A , Zhou Y , Lai N A , et al. An elementary proof of Strauss conjecture. Journal of Functional Analysis, 2014, 267 (5): 1364- 1381 |
| 12 | Lindblad H , Sogge C D . Long-time existence for small amplitude semilinear wave equations. American Journal of Mathematics, 1996, 118 (5): 1047- 1135 |
| 13 | Takamura H , Wakasa K . The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions. Journal of Differential Equations, 2011, 251 (4/5): 1157- 1171 |