| 1 | Aiseba B , Bendahmane M , Noussair A . A reaction-diffusion system modeling predator-prey with pre-taxis. Nonlinear Anal Real World Anal, 2008, 9: 2086- 2105 | | 2 | Gao X , Zhou J , Tian M . Global boundedness and asymptotic behavior for an attraction-repulsion chemotaxis system with logistic source. Acta Math Sci, 2017, 37A: 113- 121 | | 3 | Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanism. Bull London Math Soc, 2018, 50: 598- 618 | | 4 | Jin C . Large time behavior of solutions to a chemotaxis model with porous medium diffusion. J Math Anal Appl, 2019, 478: 195- 211 | | 5 | Jin H , Wang Z . Global stability of prey-taxis systems. J Differential Equations, 2017, 262: 1257- 1290 | | 6 | Kareiva P , Odell G . Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search. Amer Nat, 1987, 130: 233- 270 | | 7 | Lee J M , Hillen T , Lewis M A . Pattern formation in prey-taxis systems. J Biol Dynam, 2009, 3: 551- 573 | | 8 | Stinner C , Surulescu C , Winkler M . Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal, 2014, 46: 1969- 2007 | | 9 | Sugiyama Y . Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis. Differential Integral Equations, 2007, 20: 133- 180 | | 10 | Tao Y . Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal Real World Anal, 2010, 11: 2056- 2064 | | 11 | Tello J , Wrzosek D . Predator-prey model with diffusion and indirect prey-taxis. Mathematical Models and Methods in Applied Science, 2016, 11: 2129- 2162 | | 12 | Tao Y , Winkler M . Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin Dyn Syst, 2012, 32: 1901- 1914 | | 13 | Wu S , Shi J , Wu B . Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J Differential Equations, 2016, 260: 5847- 5874 | | 14 | Wang X , Wang W , Zhang G . Global bifurcation of solutions for a predator-prey model with prey-taxis. Math Methods Appl Sci, 2015, 38: 431- 443 | | 15 | Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248: 2889-2905 | | 16 | Winkler M . Chemotaxis with logistic source:very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348: 708- 729 | | 17 | Zheng P , Mu C , Hu X . Persistence property in a two-species chemotaxis system with two signals. J Math Phys, 2017, 58 (11): 111501 | | 18 | Wu Z Q , Yin J X , Wang C P . Introduction to Elliptic and Parabolic Equations. Beijing: Science Press, 2003 |
|