数学物理学报 ›› 2019, Vol. 39 ›› Issue (6): 1514-1531.
收稿日期:
2018-04-02
出版日期:
2019-12-26
发布日期:
2019-12-28
作者简介:
杨朝强, E-mail: 基金资助:
Received:
2018-04-02
Online:
2019-12-26
Published:
2019-12-28
Supported by:
摘要:
在混合跳扩散Black-Scholes(B-S)模型下研究了欧式固定履约价的回望期权定价问题.结合Merton假设条件以及风险资产所满足的随机微分方程的Cauchy初值问题,利用多尺度参数摄动方法求解了欧式回望期权所适合的抛物型随机偏微分方程,给出了欧式固定履约价的回望期权的近似定价公式,并利用Feynman-Kac公式分析了近似公式的误差估计.数值模拟研究表明,当混合跳扩散模型的波动率为常数时,欧式回望期权是有精确解的,并且随着模拟阶数的增大,回望期权价格的近似解逐渐地逼近期权价格的精确解.
中图分类号:
杨朝强. 一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价[J]. 数学物理学报, 2019, 39(6): 1514-1531.
Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model[J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531.
表 1
欧式固定履约价的回望看跌期权价格$(\varepsilon_1=0.01, \varepsilon_2=0.001, \varepsilon_3=0.0001)$"
股价 | 精确值 | ||||||
10 | 71.419978523 | 73.636156468 | 76.519896751 | 81.145748979 | 84.912047501 | 88.658351421 | 87.5310 |
20 | 63.260586024 | 65.223576189 | 67.777862873 | 71.875233511 | 75.211250358 | 78.529556890 | 77.5310 |
30 | 55.101193512 | 56.810995913 | 59.035828989 | 62.604718032 | 65.510453213 | 68.400762361 | 67.5310 |
40 | 46.941801092 | 48.398415621 | 50.293795111 | 53.334202565 | 55.809656065 | 58.271967823 | 57.5310 |
50 | 38.782408511 | 39.985835343 | 41.551761231 | 44.063687088 | 46.108858922 | 48.143173289 | 47.5310 |
60 | 30.623016001 | 31.573255065 | 32.809727353 | 34.793171621 | 36.408061771 | 38.014378764 | 37.5310 |
70 | 22.464439443 | 23.161516031 | 24.068567676 | 25.523583232 | 26.708234734 | 27.886597117 | 27.5320 |
80 | 14.368445442 | 14.814301500 | 15.394459401 | 16.325099631 | 17.082812751 | 17.836503307 | 17.6097 |
90 | 7.057221764 | 7.276208938 | 7.561159943 | 8.018254242 | 8.390413468 | 8.760596967 | 8.6492 |
表 2
欧式固定履约价的回望看跌期权价格$(\varepsilon_1=0.02, \varepsilon_2=0.002, \varepsilon_3=0.0002)$"
股价 | 精确值 | ||||||
10 | 67.386870055 | 71.018366151 | 76.238252122 | 83.309467972 | 86.150639011 | 89.728816161 | 87.5310 |
20 | 59.688240989 | 62.904855955 | 67.528394784 | 73.791757867 | 76.308338686 | 79.477726082 | 77.5310 |
30 | 51.989611921 | 54.791345753 | 58.818537464 | 64.274047874 | 66.466038363 | 69.226636056 | 67.5310 |
40 | 44.290982862 | 46.677835544 | 50.108680141 | 54.756337743 | 56.623738038 | 58.975546033 | 57.5310 |
50 | 36.592353837 | 38.564325343 | 41.398822822 | 45.238627682 | 46.781437737 | 48.724456004 | 47.5310 |
60 | 28.893724747 | 30.450815141 | 32.688965565 | 35.720917626 | 36.939137373 | 38.473365978 | 37.5310 |
70 | 21.195865544 | 22.338116291 | 23.979979171 | 26.204159333 | 27.097821272 | 28.223301060 | 27.5320 |
80 | 13.557054821 | 14.287648062 | 15.337797447 | 16.760401881 | 17.331995611 | 18.051862002 | 17.6097 |
90 | 6.658698249 | 7.017537244 | 7.533329792 | 8.232057784 | 8.512802401 | 8.866372785 | 8.6492 |
1 |
Elliott J , Hoek J . A general fractional white noise theory and applications to finance. Mathematical Finance, 2003, 13 (2): 301- 330
doi: 10.1111/1467-9965.00018 |
2 |
Hu Y Z , Øsendal B . Fractional White noise calculus and applications to finance, infinite dimensional analysis. Quantum Probability and Related Topics, 2003, 6 (1): 1- 32
doi: 10.1142/S0219025703001110 |
3 | Mishura Y . Stochastic Calculus Fractional Brownian Motions and Related Processes. Berlin: Springer, 2008 |
4 |
Tomas B , Henrik H . A note on Wick products and the fractional Black-Scholes model. Finance and Stochastics, 2005, 9 (2): 197- 209
doi: 10.1007/s00780-004-0144-5 |
5 |
Xiao W L , Zhang W G , Zhang X L , Zhang X . Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm. Physica A, 2012, 391 (24): 6418- 6431
doi: 10.1016/j.physa.2012.07.041 |
6 |
Sun L . Pricing currency options in the mixed fractional Brownian motion. Physica A, 2013, 392 (16): 3441- 3458
doi: 10.1016/j.physa.2013.03.055 |
7 | He X J , Chen W T . The pricing of credit default swaps under a generalized mixed fractional Brownian motion. Physica A, 2014, 404 (36): 26- 33 |
8 |
Cheridito P . Mixed fractional Brownian motion. Bernoulli, 2001, 7 (6): 913- 934
doi: 10.2307/3318626 |
9 | Zili M. On the mixed fractional Brownian motion. Journal of Applied Mathematics and Stochastic Analysis, 2006, 1-9: Art ID: 32435 |
10 |
Bender C , Sottinen T , Valkeila E . Pricing by hedging and no-arbitrage beyond semimartingales. Finance and Stochastics, 2008, 12 (4): 441- 468
doi: 10.1007/s00780-008-0074-8 |
11 | Foad S , Adem K . Pricing currency option in a mixed fractional Brownian motion with jumps environment. Mathematical Problems in Engineering, 2014, 1 (1): 1- 13 |
12 | Foad S , Adem K . Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option. Advances in Difference Equations, 2015, 257 (1): 1- 8 |
13 |
Rao B L S P . Option pricing for processes driven by mixed fractional Brownian motion with superimposed jumps. Probability in the Engineering and Informational Sciences, 2015, 29 (4): 589- 596
doi: 10.1017/S0269964815000200 |
14 |
Miao J , Yang X . Pricing model for convertible bonds:A mixed fractional Brownian motion with jumps. East Asian Journal on Applied Mathematics, 2015, 5 (3): 222- 237
doi: 10.4208/eajam.221214.240415a |
15 | Yang Z Q . Optimal exercise boundary of American fractional lookback option in a mixed jump-diffusion fractional Brownian motion environment. Mathematical Problems in Engineering, 2017, 3 (1): 1- 17 |
16 | 张伟江. 奇异摄动导论. 北京: 科学出版社, 2014 |
Zhang W J . Introduction to Singular Perturbation. Beijing: Science Press, 2014 | |
17 |
Nesterov A V , Shuliko O V . Asymptotics of the solution to a singularly perturbed system of parabolic equations in the critical case. Computational Mathematics and Mathematical Physics, 2010, 50 (2): 256- 263
doi: 10.1134/S0965542510020077 |
18 |
Ma Y S , Li Y . A uniform asymptotic expansion for stochastic volatility model in pricing multi-asset European options. Applied Stochastic Models in Business and Industry, 2012, 28 (4): 324- 341
doi: 10.1002/asmb.880 |
19 | Butuzov V F , Bychkov A I . Asymptotics of the solution of an initial-boundary value problem for a singularly perturbed parabolic equation in the case of double root of the degenerate equation. Computational Mathematics and Mathematical Physics, 2013, 49 (10): 1261- 1273 |
20 |
Lai T L , Lim T W . Exercise regions and efficient valuation of American lookback options. Mathematical Finance, 2004, 14 (2): 249- 269
doi: 10.1111/j.0960-1627.2004.00191.x |
21 |
Eberlein E , Papapantoleon A . Equivalence of floating and fixed strike Asian and lookback options. Stochastic Processes and their Applications, 2005, 115 (1): 31- 40
doi: 10.1016/j.spa.2004.07.003 |
22 |
Leung K S . An analytic pricing formula for lookback options under stochastic volatility. Applied Mathematics Letters, 2013, 26 (1): 145- 149
doi: 10.1016/j.aml.2012.07.008 |
23 |
Park S H , Kim J H . An semi-analytic pricing formula for lookback options under a general stochastic volatility model. Statistics and Probability Letters, 2013, 83 (11): 2537- 2543
doi: 10.1016/j.spl.2013.08.002 |
24 |
Fuh C D , Luo S F , Yen J F . Pricing discrete path-dependent options under a double exponential jump-diffusion model. Journal of Banking and Finance, 2013, 37 (8): 2702- 2713
doi: 10.1016/j.jbankfin.2013.03.023 |
25 |
杨朝强. 一类特殊混合跳-扩散模型的欧式回望期权定价. 华东师范大学学报(自然科学版), 2017, 194 (4): 1- 17
doi: 10.3969/j.issn.1000-5641.2017.04.001 |
Yang Z Q . Pricing European lookback option by a special kind of mixed jump-diffusion model. Journal of East China Normal University (Natural Science), 2017, 194 (4): 1- 17
doi: 10.3969/j.issn.1000-5641.2017.04.001 |
|
26 |
杨朝强. 混合跳-扩散模型下一类基金公司的金融债券定价与违约概率研究. 系统工程, 2018, 36 (2): 16- 28
doi: 10.3969/j.issn.1001-2362.2018.02.007 |
Yang Z Q . Pricing of fund corporate bonds and default probability study under mixed jump-diffusion model. Systems Engineering, 2018, 36 (2): 16- 28
doi: 10.3969/j.issn.1001-2362.2018.02.007 |
[1] | 张胜良, 钱艳艳. 随机扰动下三阶MQ拟插值在导数逼近中的应用研究[J]. 数学物理学报, 2025, 45(1): 180-188. |
[2] | 何娅, 安静. 周期边界条件下四阶特征值问题的一种有效的 Fourier 谱逼近[J]. 数学物理学报, 2024, 44(1): 37-49. |
[3] | 牛翠霞,马和平. 非线性非一致介质二维Maxwell方程leap-frog Crank-Nicolson多区域Legendre-tau配置谱方法[J]. 数学物理学报, 2023, 43(3): 808-828. |
[4] | 杨帆, 曹英, 李晓晓. 时空分数阶扩散波动方程的初值识别问题[J]. 数学物理学报, 2023, 43(2): 377-398. |
[5] | 王克彦,王奇生. 一类非线性双曲型方程扩展混合有限元方法的误差估计[J]. 数学物理学报, 2021, 41(2): 468-478. |
[6] | 葛志昊, 曹济伟. 反应扩散问题的新的绝对稳定hp间断Galerkin方法[J]. 数学物理学报, 2018, 38(2): 385-394. |
[7] | 方志朝, 李宏, 罗振东, 刘洋. Sine-Gordon方程的混合有限体积元方法及数值模拟[J]. 数学物理学报, 2018, 38(2): 395-416. |
[8] | 陈传军, 张晓艳, 赵鑫. 一维非线性抛物问题两层网格有限体积元逼近[J]. 数学物理学报, 2017, 37(5): 962-975. |
[9] | 杨帆, 傅初黎, 李晓晓, 任玉鹏. 一类非线性反向热传导问题的Fourier正则化方法[J]. 数学物理学报, 2017, 37(1): 62-71. |
[10] | 陈传军, 赵鑫. 一类非线性对流扩散方程两重网格特征有限元方法及误差估计[J]. 数学物理学报, 2014, 34(3): 643-654. |
[11] | 石东洋, 于志云. 带有阻尼项的定常Stokes方程的低阶非协调混合有限元方法的超逼近和超收敛分析[J]. 数学物理学报, 2013, 33(4): 735-745. |
[12] | 方志朝, 李宏, 罗振东. 伪双曲型方程的混合控制体积方法[J]. 数学物理学报, 2013, 33(3): 535-550. |
[13] | 李磊, 孙萍, 罗振东. 抛物方程一种新混合有限元格式及误差分析[J]. 数学物理学报, 2012, 32(6): 1158-1165. |
[14] | 何斯日古楞, 李宏. 弹性动力学问题的混合间断时空有限元法[J]. 数学物理学报, 2012, 32(6): 1179-1190. |
[15] | 石东洋, 裴丽芳, 许超. 双负介质中电磁波传播的各向异性非协调有限元分析[J]. 数学物理学报, 2012, 32(5): 982-995. |
|