| 1 | Date E, Jimbo M, Kashiwara M, Miwa T. Transformation Groups for Soliton Equations//Stone M. Nonlinear Inregrable Systems-Classical and Quantum Theory. Singapore:World Scientific, 1983:427-507 | | 2 | Dickey L A. Soliton Equations and Hamiltonian Systems. Singapore:World Scientific, 2003 | | 3 | Cheng Y , Li Y S . The constraint of the KP equation and its special solutions. Phys Lett A, 1991, 157, 22- 26 | | 4 | Konopelchenko B , Sidorenko J , Strampp W . (1+1)-Dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys Lett A, 1999, 157, 17- 21 | | 5 | Cheng Y . Constraints of the KP hierarchy. J Math Phys, 1992, 33, 3774- 3782 | | 6 | Cheng J P . The integral type gauge transformation and the additional symmetry for the constrained KP hierarchy. Acta Math Sci, 2015, 35B, 1111- 1121 | | 7 | Gao X , Li C Z , He J S . Recursion relations for the constrained multi-component KP hierarchy. Acta Math Sin, 2017, 33, 1578- 1586 | | 8 | Aratyn H , Nissimov E , Pacheva S . Virasoro symmetry of constrained KP hierarchies. Phys Lett A, 1997, 288, 164- 175 | | 9 | Sidorenko J , Strampp W . Symmetry constraints of the KP hierarchy. Inverse Problems, 1991, 7, L37- L43 | | 10 | Kashiwara M , Miwa T . The τ function of the Kadomtsev-Petviashvili equation transfromation groups for soliton equations, I. Proc Japan Acad A, 1981, 57, 342- 347 | | 11 | Jimbo M , Miwa T . Solitons and infinite dimensional Lie algebras. Publ RIMS Kyoto Univ, 1983, 19, 943- 1001 | | 12 | Oevel W , Rogers C . Gauge transformations and reciprocal links in 2+1 dimensions. Rev Math Phys, 1993, 5, 299- 330 | | 13 | Kupershmidt B A . Mathematics of dispersive water waves. Commun Math Phys, 1985, 99, 51- 73 | | 14 | Kiso K . A remark on the commuting flows defined by Lax equations. Prog Theo Phys, 1990, 83, 1108- 1125 | | 15 | Shaw J C , Tu M H . Miura and auto-Backlund transformations for the cKP and cmKP hiearchies. J Math phys, 1997, 38, 5756- 5773 | | 16 | Shaw J C , Yen Y C . Miura and Backlund transformations for hierarchies of integrable equations. Chin J Phys, 1993, 31, 709- 719 | | 17 | Cheng J P , Li M H , Tian K L . On the modified KP hierarchy:tau functions, squared eigenfunction symmetries and additional symmetries. J Geom Phys, 2018, 134, 19- 37 | | 18 | Cheng J P . The gauge transformation of the modified KP hierarchy. J Nonlin Math Phys, 2018, 25, 66- 85 | | 19 | Oevel W , Carillo S . Squared eigenfunction symmetries for soliton equations:Part I. J Math Anal Appl, 1998, 217, 161- 178 | | 20 | Oevel W , Carillo S . Squared eigenfunction symmetries for soliton equations:Part II. J Math Anal Appl, 1998, 217, 179- 199 | | 21 | Oevel W . Darboux theorems and Wronskian formulas for intergrable system I:Constrained KP flows. Phys A, 1993, 195, 533- 576 | | 22 | Aratyn H , Nissimov E , Pacheva S . Method of squared eigenfunction potentials in integrable hierarchies of KP type. Commun Math Phys, 1998, 193, 493- 525 | | 23 | Adler M , Shiota T , Van Moerbeke P . A Lax representation for the vertex operator and the central extension. Commun Math Phys, 1995, 171, 547- 588 | | 24 | Dickey L A . On additional symmetries of the KP hierarchy and Sato's Backlund transformation. Commun Math Phys, 1995, 167, 227- 233 | | 25 | Liu X J , Zeng Y B , Lin R L . A new extended KP hierarchy. Phys Lett A, 2008, 372, 3819- 3823 | | 26 | Liu X J , Zeng Y B , Lin R L . An extended two-dimensional Toda lattice hierarchy and two-dimensional Toda lattice with self-consistent sources. J Math Phys, 2008, 49, 093506 | | 27 | Cheng J P , He J S , Hu S . The "ghost" symmetry the BKP hierarchy. J Math Phys, 2010, 51, 053514 | | 28 | Cheng J P , He J S . On the squared eigenfunction symmetry of the Toda lattice hierarchy. J Math Phys, 2013, 54, 023511 | | 29 | Cheng J P , He J S . Squared eigenfunction symmetries for the BTL and CTL hierarchies. Commun Theor Phys, 2013, 59, 131- 136 | | 30 | Miura R M . Korteweg-de Vries equation and generalizations I:A remarkable explicit nonlinear transformation. J Math Phys, 1968, 9, 1202- 1204 | | 31 | Cheng J P . Miura and auto-Backlund transformations for the q-deformed KP and q-deformed modified KP hierarchies. J Nonlin Math Phys, 2017, 1, 7- 19 | | 32 | Konopelchenko B G . On the gauge-invariant description of the evolution equations integrable by Gelfand-Dikij spectral problems. Phys Lett A, 1982, 92, 323- 327 | | 33 | Kupershmidt B A . Canonical property of the Miura maps between the MKP and KP hierarchies, Continuous and Discrete. Commun Math Phys, 1995, 167, 351- 371 |
|