数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 63-71.
收稿日期:
2019-03-13
出版日期:
2020-02-26
发布日期:
2020-04-08
通讯作者:
韩亚洲
E-mail:yazhou.han@gmail.com
基金资助:
Received:
2019-03-13
Online:
2020-02-26
Published:
2020-04-08
Contact:
Yazhou Han
E-mail:yazhou.han@gmail.com
Supported by:
摘要:
令(Mn,g)为n维无边紧黎曼流形,
的极值问题.首先,利用算子$I_\alpha: L^p(M^n)\rightarrow L^q(M^n)$在次临界情形(即$p>\frac{nq}{n+\alpha q}$)时的紧致性,证明$p>\frac{nq}{n+\alpha q}$时极值函数$f_p\in L^p(M^n)$的存在性;进而证明函数列$\{f_p\}$为临界情形时HLS不等式的最佳常数的极值列;最后,结合极值列$\{f_p\}$在$L^{\frac{nq}{n+\alpha q}}(M^n)$中的一致有界性,利用文献[
中图分类号:
张书陶,韩亚洲. 紧黎曼流形上Hardy-Littlewood-Sobolev不等式的极值问题:次临界逼近法[J]. 数学物理学报, 2020, 40(1): 63-71.
Shutao Zhang,Yazhou Han. Extremal Problems of Hardy-Littlewood-Sobolev Inequalities on Compact Riemannian Manifolds: the Approximation Method from Subcritical to Critical[J]. Acta mathematica scientia,Series A, 2020, 40(1): 63-71.
1 | Brendle S . Global existence and convergence for a higher order flow in conformal geometry. Ann of Math, 2003, 158 (1): 323- 343 |
2 |
Brezis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88, 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3 |
3 |
Chang S Y , Gursky M , Yang P C . An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann of Math, 2002, 155 (3): 709- 787
doi: 10.2307/3062131 |
4 | Chen W, Li C. Methods on Nonlinear Elliptic Equations. Missouri: American Institute of Mathematical Sciences, 2010 |
5 |
Djadli Z , Malchiodi A . Existence of conformal metrics with constant Q-curvature. Ann of Math, 2008, 168 (3): 813- 858
doi: 10.4007/annals.2008.168.813 |
6 |
Dou J , Guo Q , Zhu M . Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space. Advances in Mathematics, 2017, 312, 1- 45
doi: 10.1016/j.aim.2017.03.007 |
7 | Dou J, Guo Q, Zhu M. Negative power nonlinear integral equations on bounded domains. 2019, arxiv: 1904.03878[math.AP] |
8 |
Dou J , Zhu M . Nonlinear integral equations on bounded domains. J Funct Anal, 2019, 277 (1): 111- 134
doi: 10.1016/j.jfa.2018.05.020 |
9 |
Dou J , Zhu M . Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. Int Math Res Notices, 2015, 2015, 651- 687
doi: 10.1093/imrn/rnt213 |
10 |
Dou J , Zhu M . Reversed Hardy-Littewood-Sobolev inequality. Int Math Res Notices, 2015, 2015, 9696- 9726
doi: 10.1093/imrn/rnu241 |
11 |
Frank R L , Lieb E H . Sharp constants in several inequalities on the Heisenberg group. Annals of Mathematics, 2012, 176, 349- 381
doi: 10.4007/annals.2012.176.1.6 |
12 | González M , Mazzeo R , Sire Y . Singular solutions of fractional order conformal Laplacians. J Geom Anal, 2012, 22 (2): 845- 863 |
13 | González M , Qing J . Fractional conformal Laplacians and fractional Yamabe problems. Analysis & PDE, 2013, 6 (7): 1535- 1576 |
14 | Graham C R , Zworski M . Scattering matrix in conformal geometry. Invent Math, 2013, 152 (1): 89- 118 |
15 | Guan P , Lin C S , Wang G . Application of the method of moving planes to conformally invariant equations. Math Z, 2004, 247 (1): 1- 19 |
16 |
Gursky M , Viaclovsky J . A fully nonlinear equation on four-manifolds with positive scalar curvature. J Differential Geom, 2003, 63 (1): 131- 154
doi: 10.4310/jdg/1080835660 |
17 |
Gursky M , Viaclovsky J . Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann of Math, 2007, 166 (2): 475- 531
doi: 10.4007/annals.2007.166.475 |
18 |
Han Y , Zhu M . Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J Differential Equations, 2016, 260, 1- 25
doi: 10.1016/j.jde.2015.06.032 |
19 |
Hang F , Wang X , Yan X . An integral equation in conformal geometry. Ann Inst H Poincaré Analyse Non Linéaire, 2009, 26, 1- 21
doi: 10.1016/j.anihpc.2007.03.006 |
20 | Hang F , Wang X , Yan X . Sharp integral inequalities for Harmonic functions. Comm Pure Appl Math, 2007, 61 (1): 54- 95 |
21 |
Jin T , Li Y Y , Xiong J . On a fractional Nirenberg problem, part Ⅰ:blow up analysis and compactness of solutions. J Eur Math Soc, 2014, 16, 1111- 1171
doi: 10.4171/JEMS/456 |
22 | Jin T , Li Y Y , Xiong J . On a fractional Nirenberg problem, part Ⅱ:existence of solutions. Int Math Res Notices, 2015, 2015, 1555- 1589 |
23 |
Jin T , Li Y Y , Xiong J . The Nirenberg problem and its generalizations:A unified approach. Math Ann, 2017, 369, 109- 151
doi: 10.1007/s00208-016-1477-z |
24 | Jin T , Xiong J . A fractional Yamabe flow and some applications. J Reine Angew Math, 2014, 696, 187- 223 |
25 |
Lee J M , Parker T H . The Yamabe problem. Bull Amer Math Soc, 1987, 17 (1): 37- 91
doi: 10.1090/S0273-0979-1987-15514-5 |
26 | Lions P L . The concentration-compactness principle in the calculus of variations, the limit case, Part 1. Rev Mat Iberoamericana, 1985, 1 (1): 145- 201 |
27 | Lions P L . The concentration-compactness principle in the calculus of variations, the limit case, Part 2. Rev Mat Iberoamericana, 1985, 1 (2): 45- 121 |
28 |
Li A , Li Y Y . On some conformally invariant fully nonlinear equations Ⅱ:Liouville, Harnack and Yamabe. Acta Math, 2005, 195, 117- 154
doi: 10.1007/BF02588052 |
29 |
Lieb E . Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann of Math, 1983, 118, 349- 374
doi: 10.2307/2007032 |
30 |
Ngô Q A , Nguyen V H . Sharp reversed Hardy-Littlewood-Sobolev inequality on Rn. Israel Journal of Mathematics, 2017, 220, 189- 223
doi: 10.1007/s11856-017-1515-x |
31 | Ngô Q A , Nguyen V H . Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R+n. International Mathematics Research Notices, 2017, 2017, 6187- 6230 |
32 | Zhang S, Han Y. Extremal problem of Hardy-Littlewood-Sobolev inequalities on compact Riemanniannian manifolds. 2019, arXiv: 1901.02309[math. AP] |
33 | Zhu M . Prescribing integral curvature equation. Differential and Integral Equations, 2016, 29 (9/10): 889- 904 |
[1] | 朱伟鹏, 李金禄, 吴星. 带阻尼Boussinesq方程的一类大初值整体光滑解[J]. 数学物理学报, 2025, 45(4): 1077-1085. |
[2] | 寿晓华, 钟新. 三维非等温可压缩向列型液晶流的Serrin准则[J]. 数学物理学报, 2025, 45(4): 1058-1076. |
[3] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[4] | 孙泽欣, 张丽, 包雄雄. 高维时空周期媒介中部分退化模型的传播速度[J]. 数学物理学报, 2025, 45(4): 1110-1127. |
[5] | 王汉义, 黄诗雨, 向建林. 一类Kirchhoff型椭圆方程的山路解和基态解[J]. 数学物理学报, 2025, 45(4): 1041-1057. |
[6] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[7] | 左文文, 周寿明. 带源项的抛物-抛物高维 Keller-Segel 方程的全局解[J]. 数学物理学报, 2025, 45(4): 1100-1109. |
[8] | 刘羽, 陈光淦, 李树勇. 随机 Kuramoto-Sivashinsky 方程行波解的非线性稳定[J]. 数学物理学报, 2025, 45(3): 790-806. |
[9] | 鹿高杰, 韩众, 刘露. 非局域反时空高阶非线性薛定谔方程的达布变换及其精确解[J]. 数学物理学报, 2025, 45(3): 767-775. |
[10] | 段誉, 孙歆. 一类 Klein-Gordon-Maxwell 系统解的存在性和多重性[J]. 数学物理学报, 2025, 45(3): 756-766. |
[11] | 冯振东, 郭飞, 李岳群. 一类半线性波动方程弱耦合系统解的破裂[J]. 数学物理学报, 2025, 45(3): 726-747. |
[12] | 周宇杰,罗纬宇,汪玉峰,张忠祥. 四元数分析中光滑曲面上的 Poincaré-Bertrand 公式[J]. 数学物理学报, 2025, 45(2): 534-553. |
[13] | 李彬,谢莉. 具奇异敏感的趋向性犯罪模型中的警察威慑效应[J]. 数学物理学报, 2025, 45(2): 512-533. |
[14] | 陈娜,王培合. 带有斜边值条件的 Hessian 商方程解的梯度估计[J]. 数学物理学报, 2025, 45(2): 493-511. |
[15] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
|