| 1 | Antontsev S, Díaz J, Shmarev S. Energy Methods for free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Boston: Bikh?user, 2002 | | 2 | Antontsev S , Rodrigues J . On stationary thermo-rheological viscous flows. Ann Univ Ferrara Sez VⅡ Sci Mat, 2006, 52, 19- 36 | | 3 | Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up. Differ Equ Appl, 2011, 3, 503- 525 | | 4 | Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping: blow-up of solutions. C R Mecanique, 2011, 339, 751- 755 | | 5 | Fan X , Zhao D . On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. J Math Anal Appl, 2001, 263, 424- 446 | | 6 | Guo B , Gao W . Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity. Acta Math Sci, 2012, 32B (3): 1053- 1062 | | 7 | Guo B , Gao W . Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian operator and positive initial energy. C R Mecanique, 2014, 342, 513- 519 | | 8 | Guo B . An inverse H?lder inequality and its application in lower bound estimates for blow-up time. C R Mecanique, 2017, 345, 370- 377 | | 9 | Haehnle J , Prohl A . Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions. Math Comp, 2010, 79, 189- 208 | | 10 | Li F , Liu F . Blow-up of solutions to a quasilinear wave equation for high initial energy. C R Mecanique, 2018, 346, 402- 407 | | 11 | Martinez P . A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control Optim Calc Var, 1999, 4, 419- 444 | | 12 | Messaoudi S , et al. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput Math Appl, 2018, 76, 1863- 1875 | | 13 | Pucci P, Serrin J. Asympptotic Stablility for Nonlinear Parabolic Systems//Antontsev S N, Diaz J I, Shmarev S I. Energy Methods in Continuum Mechanics. Dordrecht: Kluwer Acad Publ, 1996: 66-74 | | 14 | Pinasco J . Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal, 2009, 71, 1094- 1099 | | 15 | R${\rm{\dot u}}$?i?ka M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000 | | 16 | Rajagopal K , R${\rm{\dot u}}$?i?ka M . Mathematical modeling of electro-rheological fluids. Cont Mech Therm, 2001, 13, 59- 78 |
|