| 1 | Duncan T E , Hu Y Z , Pasik-Duncan B . Stochastic calculus for fractional Brownian motion, I:Theory. SIAM Journal of Control and Optimization, 2000, 38 (2): 582- 612 |
| 2 | Elliott R J , Van Der Hoek J . A general fractional white theory and applications to finance. Mathematical Finance, 2003, 13 (2): 301- 330 |
| 3 | Hu Y Z , Peng S G . Backward stochastic differential equation driven by fractional Brownian motion. SIAM Journal of Control and Optimization,, 2009, 48 (3): 1675- 1700 |
| 4 | 肖艳清, 邹捷中. 分数布朗运动驱动下z一致连续的BSDE解的存在性与唯一性. 应用数学学报, 2012, 35 (2): 245- 251 |
| 4 | Xiao Y Q , Zou J Z . Existence and uniqueness of the solution to BSDE driven by fractional Brownian motion with the generator is uniformly continuous in z. Acta Mathematicae Applicatae Sinica, 2012, 35 (2): 245- 251 |
| 5 | Z?hle M . Integration with respect to fractal functions and stochastic calculus I. Prob Theory Relat Fields, 1998, 111, 333- 344 |
| 6 | Nualart D , Rǎscanu A . Differential equations driven by fractional Brownian motion. Collect Math, 2002, 53, 55- 81 |
| 7 | Maticiuc L , Nie T Y , Rǎscanu A . Fractional backward stochastic differential equations and fractional backward variational inequalities. Journal of Theoretical Probability, 2015, 28 (1): 337- 395 |
| 8 | Guerra J , Nualart D . Stochastic differential equations driven by fractional brownian motion and standard Brownian motion. Stochastic Analysis and Applications, 2008, 26, 1053- 1075 |
| 9 | 冉启康. 分数Brown运动驱动的非Lipschitz随机微分方程. 纯粹数学与应用数学, 2016, 32 (6): 551- 561 |
| 9 | Ran Q K . Non-Lipschitz stochastic differential equations driven by fractional Brownian. Pure and Applied Mathematics, 2016, 32 (6): 551- 561 |
| 10 | 王赢, 王向荣. 一类非Lipschitz条件的Backward SDE适应解的存在唯一性. 应用概率统计, 2003, 19 (3): 245- 251 |
| 10 | Wang Y , Wang X R . Adapted solutions of backward SDE with non-Lipschitz coefficients. Chinese Journal of Applied Probability and Statistics, 2003, 19 (3): 245- 251 |
| 11 | 冉启康. 一类非Lipschitz条件的BSDE解的存在唯一性. 工程数学学报, 2006, 23 (2): 286- 292 |
| 11 | Ran Q K . Existence and uniqueness of solutions on a class of BSDEs with non-Lipschitz coefficient. Chinese Journal of Engineering Mathematics, 2006, 23 (2): 286- 292 |
| 12 | 毛伟. 带有非Lipschitz系数的跳扩散微分方程解的存在性. 华中师范大学学报(自然科学版), 2016, 50 (1): 10- 14 |
| 12 | Mao W . Existence of the solutions to jump-diffusion differential equations with non-Lipschitz coefficients. Journal of Central China Normal University (Natural Sciences), 2016, 50 (1): 10- 14 |
| 13 | Albeverio S , Brzeniak Z , Wu J L . Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. Journal of Mathematical Analysis and Applications, 2010, 371, 309- 322 |
| 14 | Majka M B. A note on existence of global solutions and invariant measures for jump SDEs with locally one-sided Lipschitz drift. 2016, arXiv: 1612.03824[math.PR] |
| 15 | Samko S G , Kilbas A A , Marichev O I . Fractional Integrals and Derivatives:Theory and Applications. Yvendon:Gordon and Breach, 1993, 77- 82 |
| 16 | 张骅月.分数布朗运动及其在保险金融中的应用[D].天津:南开大学, 2007 |
| 16 | Zhang H Y. Fractional Brownian Motion and Its Application in Insurance Finance[D]. Tianjin: Nankai University, 2007 |
| 17 | 张卫国, 肖炜麟. 分数布朗运动下股本权证定价研究:模型与参数估计. 北京: 科学出版社, 2013 |
| 17 | Zhang W G , Xiao W L . Equity Warrant Pricing Under Fractional Brownian Motion:Model and Parameter Estimation. Beijing: Science Press, 2013 |