| 1 | Kermack W O , McKendrick A G . Contributions to the mathematical theory of epidemics-I. Bull Math Biol, 1991, 53 (1/2): 33- 55 | | 2 | Ma Z N, Zhou Y C, Wu J H. Modeling and Dynamics of Infectious Diseases. Beijing:Higher Education Press, 2009 | | 3 | Zhang J , Jin Z , Sun G Q , et al. Analysis of rabies in China:transmission dynamics and control. PloS One, 2011, 6 (7): e20891 | | 4 | Buonomo B , D'Onofrio A , Lacitignola D . Global stability of an SIR epidemic model with information dependent vaccination. Math Biosci, 2008, 216 (1): 9- 16 | | 5 | Korobeinikov A , Wake G C . Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett, 2002, 15 (8): 955- 960 | | 6 | Korobeinikov A . Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bull Math Biol, 2006, 30, 615- 626 | | 7 | Blower S . Modelling the genital herpes epidemic. Herpes, 2004, 3, 138A- 146A | | 8 | Wildy P, Field H J, Nash A A. Classical herpes latency revisited//Mahy B W J, Minson A C, Darby G K, et al. Virus Persistence Symposium. Cambridge:Cambridge University Press, 1982, 33:133-168 | | 9 | Tudor D . A deterministic model for herpes infections in human and animal populations. SIAM Rev, 1990, 32 (1): 136- 139 | | 10 | Vargas-De-León C . On the global stability of infectious disease models with relapse. Abstraction and Application, 2013, 9, 50- 61 | | 11 | Gray A , Greenhalgh D , Hu L , et al. A stochastic differential equation SIS epidemic model. SIAM J Appl Math, 2011, 71 (3): 876- 902 | | 12 | Lin Y G , Jiang D Q , Wang S . Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A, 2014, 394, 187- 197 | | 13 | Lahrouz A , Omari L , Kiouach D . Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control, 2011, 16 (1): 59- 76 | | 14 | Lahrouz A , Settati A . Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl Math Comput, 2014, 233, 10- 19 | | 15 | Bai Z G , Zhou Y C . Existence of two periodic solutions for a non-autonomous SIR epidemic model. Appl Math Model, 2011, 35 (1): 382- 391 | | 16 | Bai Z G , Zhou Y C , Zhang T L . Existence of multiple periodic solutions for an SIR model with seasonality. Nonlinear Anal TMA, 2011, 74 (11): 3548- 3555 | | 17 | Kuniya T . Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients. Appl Math Lett, 2014, 27, 15- 20 | | 18 | Li T , Li Y G , Hethcote H W . Periodic traveling waves in SIRS endemic models. Math Comput Model, 2009, 49 (1/2): 393- 401 | | 19 | Lin Y G , Jiang D Q , Liu T . Nontrivial periodic solution of a stochastic epidemic model with seasonal variation. Appl Math Lett, 2015, 45, 103- 107 | | 20 | Ji C Y , Jiang D Q . The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations. Math Meth Appl Sci, 2016, 40 (5): 1773- 1782 | | 21 | Liu Q , Jiang D Q , Shi N Z , et al. Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model. Physica A, 2016, 462, 837- 845 | | 22 | Mao X R. Stochastic Differential Equations and Their Applications. Chichester:Horwood, 1997 | | 23 | Khasminskii R. Stochastic Stability of Differential Equations. Berlin:Springer, 2011 | | 24 | Higham D J . An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43, 525- 546 |
|