数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 452-459.
收稿日期:
2017-09-20
出版日期:
2020-04-26
发布日期:
2020-05-21
通讯作者:
欧阳成
E-mail:oyc@zjhu.edu.cn
基金资助:
Cheng Ouyang1,*(),Weigang Wang2,Jiaqi Mo3
Received:
2017-09-20
Online:
2020-04-26
Published:
2020-05-21
Contact:
Cheng Ouyang
E-mail:oyc@zjhu.edu.cn
Supported by:
摘要:
研究了一类分数阶广义非线性扰动热波方程.首先用奇异慑动方法,求出了分数阶广义非线性扰动热波方程初始边值问题的任意次近似解析解.然后利用泛函分析不动点定理证明了它的一致有效性,最后简述了它的物理意义.求得的近似解析解,弥补了单纯用数值方法求模拟解的不足.
中图分类号:
欧阳成,汪维刚,莫嘉琪. 分数阶广义扰动热波方程[J]. 数学物理学报, 2020, 40(2): 452-459.
Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation[J]. Acta mathematica scientia,Series A, 2020, 40(2): 452-459.
1 | Podlubny I. Fractional Differential Equations. London:Academic Press, 1999 |
2 | Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity:An Introduction to Mathematical Models. London:Imperial College Press, 2010 |
3 |
Rajneesh K , Vandana G . Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative. Chin Phys B, 2013, 22 (7): 074601
doi: 10.1088/1674-1056/22/7/074601 |
4 | 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究. 物理学报, 2011, 60 (4): 048901 |
Xin B G , Chen T , Liu Y Q . Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Phys Sin, 2011, 60 (4): 048901 | |
5 |
蔚涛, 罗懋康, 华云. 分数阶质量涨落谐振子的共振行为. 物理学报, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
Wei T , Luo M K , Hua Y . The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys Sin, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
|
6 |
范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
Fan W P , Jiang X Y . Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
|
7 |
Yu Y J , Wang Z H . A fractional-order phase-locked loop with time-delay and its Hopf bifurcation. Chin Phys Lett, 2013, 30 (11): 110201
doi: 10.1088/0256-307X/30/11/110201 |
8 |
Faye L , Frenod E , Seck D . Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete Contin Dyn Syst, 2011, 29 (3): 1001- 1030
doi: 10.3934/dcds.2011.29.1001 |
9 |
Samusenko P F . Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J Math Sci, 2013, 189 (5): 834- 847
doi: 10.1007/s10958-013-1223-y |
10 |
Ge H X , Cheng R J . A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation. Chin Phys B, 2014, 23 (4): 040203
doi: 10.1088/1674-1056/23/4/040203 |
11 | de Jager E M, Jiang F R. The Theory of Singular Perturbation. Amsterdam:North-Holland Publishing Co, 1996 |
12 | Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problem. Basel:Birkhauserm Verlag AG, 2007 |
13 |
韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
Han X L , Wang W G , Mo J Q . Bionomics dynamic system for epidemic virus transmission. Acta Math Sci, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
|
14 |
韩祥临, 汪维刚, 莫嘉琪. 一类非线性微分-积分时滞反应扩散系统的广义解. 数学物理学报, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
Han X L , Wang W G , Mo J Q . Generalized solution to a class of nonlinear differential-integral time delay reaction diffusion system. Acta Math Sci, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
|
15 | Mo J Q . Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, 1989, 32 (11): 1306- 1315 |
16 |
Mo J Q . Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters. Chin Phys, 2010, 19 (1): 010203
doi: 10.1088/1674-1056/19/1/010203 |
17 | Mo J Q , Yao J A , Tang R R . Approximate analytic solution of solitary wave for a class of nonlinear disturbed long-wave system. Comm Theor Phys, 2010, 54 (1): 27- 30 |
18 |
Mo J Q , Lin W T . Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climateplexity. J Sys Sci Complexity, 2011, 24 (2): 271- 276
doi: 10.1007/s11424-011-7153-1 |
19 |
Mo J Q , Lin W T , Lin Y H . Asymptotic solution for the Elñino time delay sea-air oscillator model. Chin Phys B, 2011, 20 (7): 070205
doi: 10.1088/1674-1056/20/7/070205 |
20 |
Mo J Q . Homotopiv mapping solving method for gain fluency of a laser pulse amplifier. Science in China Ser G, 2009, 52 (7): 1007- 1010
doi: 10.1007/s11433-009-0146-6 |
21 |
欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤子解. 物理学报, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Solitary wave solution for a class of dusty plasma. Acta Phys Sin, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
|
22 | 欧阳成, 陈贤峰, 莫嘉琪. 广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解. 系统科学与数学, 2017, 37 (3): 908- 917 |
Ouyang C , Chen X F , Mo J Q . The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Vedelov system. J Sys Sci Math, 2017, 37 (3): 908- 917 | |
23 | 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类广义鸭轨迹系统轨线的构造. 物理学报, 2012, 61 (3): 030202 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Constructing path curve for a class of generalized phase tracks of canard system. Acta Phys Sin, 2012, 61 (3): 030202 | |
24 | 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62 (6): 060201 |
Ouyang C , Lin W T , Cheng R J , Mo J Q . A class of asymptotic solution of sea-air time delay oscillator for the Elñino-southern oscillation mechanism. Acta Phys Sin, 2013, 62 (6): 060201 | |
25 |
Ouyang C , Cheng L H , Mo J . Solving a class of burning disturbed problem with shock layer. Chin Phy B, 2012, 21 (5): 050203
doi: 10.1088/1674-1056/21/5/050203 |
26 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion tiime delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
27 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
28 |
汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
Wang W G , Lin W T , Shi L F , Mo J Q . Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system. Acta Phys Sin, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
|
29 | 汪维刚, 石兰芳, 韩祥临, 莫嘉琪. 捕食-被捕食微分方程种群模型的研究综述. 武汉大学学报, 2015, 61 (4): 299- 307 |
Wang W G , Shi J R , Han X L , Mo J Q . The research summarizes to population model of prey-predator differential equations. J Wuhan Univ, 2015, 61 (4): 299- 307 | |
30 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion time delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
31 | Wang W G , Shi L F , Xu Y H , Mo J Q . Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters. J Nankai Univ, 2014, 47 (2): 47- 81 |
32 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
[1] | 马晶晶, 魏娜. 上半空间分数阶 |
[2] | 祝鹏, 陈艳萍, 徐先宇. 非均匀网格上时间分数阶扩散—波动方程的 BDF2 型有限元方法[J]. 数学物理学报, 2025, 45(4): 1268-1290. |
[3] | 郑焰萍, 沈建和. 一类带 Allee 效应的多尺度反应-扩散系统的波前解[J]. 数学物理学报, 2025, 45(3): 776-789. |
[4] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[5] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
[6] | 刘利斌,廖仪戈,隆广庆. 奇异摄动 Volterra 积分微分方程参数一致的数值方法[J]. 数学物理学报, 2025, 45(2): 576-583. |
[7] | 吕学琴, 何松岩, 王世宇. 基于再生核和有限差分法求解变系数时间分数阶对流扩散方程[J]. 数学物理学报, 2025, 45(1): 153-164. |
[8] | 潘柔, 陈林. 一类分数阶 |
[9] | 张伟, 陈柯元, 毋祎, 倪晋波. 多项 Caputo 分数阶微分方程 Dirichlet 问题 Lyapunov 型不等式[J]. 数学物理学报, 2024, 44(6): 1433-1444. |
[10] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[11] | 徐磊, 刘利斌. 带间断系数的奇异摄动对流扩散方程的 NIPG 有限元方法[J]. 数学物理学报, 2024, 44(6): 1499-1510. |
[12] | 王慧楠, 韩欢. 基于拟共形理论的分数阶多尺度微分同胚图像配准[J]. 数学物理学报, 2024, 44(6): 1665-1688. |
[13] | 傅越宸, 倪明康. 一类右端不连续奇异摄动高阶方程组的内部层[J]. 数学物理学报, 2024, 44(5): 1153-1166. |
[14] | 高晓茹, 李建军, 徒君. 一类带有时变系数的分数阶扩散方程解的爆破性[J]. 数学物理学报, 2024, 44(5): 1230-1241. |
[15] | 王俊杰. 空间分数阶 KGS 方程组的辛差分格式[J]. 数学物理学报, 2024, 44(5): 1319-1334. |
|