| 1 | Amann H . Dynamic theory of quasilinear parabolic systems. Ⅲ. Global existence. Math Z, 1989, 202, 219- 250 |
| 2 | Ladyzenskaja O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968 |
| 3 | Ben-Artzi M , Souplet P , Weissler F B . The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces. J Math Pures Appl, 2002, 81 (4): 343- 378 |
| 4 | Gilding B H , Guedda B H , Kersner R . The Cauchy problem for ut=Δu+uq. J Math Anal Appl, 2003, 284, 733- 755 |
| 5 | Bebernes J , Eberly D . Mathematical Problems from Combustion Theory. New York: Springer-Verlag, 1989 |
| 6 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer, 1998 |
| 7 | Quittner R , Souplet P . Superlinear Parabolic Problems:Blow-Up, Global Existence and Steady States. Basel: Bikh?user, 2007 |
| 8 | Hu B . Blow-up Theories for Semilinear Parabolic Equations. Heidelberg: Springer, 2011 |
| 9 | Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288 |
| 10 | Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214 (3): 205- 220 |
| 11 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85 (10): 1301- 1311 |
| 12 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328 (2): 1196- 1205 |
| 13 | Fang Z B , Wang Y X . Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66 (5): 2525- 2541 |
| 14 | Baghaei K , Hesaaraki M . Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations. C R Acad Paris, 2013, 351 (19-20): 731- 735 |
| 15 | Hesaaraki M , Moameni A . Blow-up of positive solutions for a family of nonlinear parabolic equations in general in RN. Michigan Math J, 2004, 52 (2): 375- 389 |
| 16 | Payne L E , Song J C . Lower bounds for blow-up time in a nonlinear parabolic problem. J Math Anal, 2009, 354 (1): 394- 396 |
| 17 | Liu Y , Luo S G , Ye Y H . Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput Math Appl, 2013, 65 (8): 1194- 1199 |
| 18 | Li H X , Gao W J , Han Y Z . Lower bounds for the blowup time of solutions to a nonlinear parabolic problem. Electron J Differ Equa, 2014, 2014 (20): 1- 6 |
| 19 | Marras M , Piro S V , Viglialoro G . Lower bounds for blow-up time in a parabolic problem with a gradient team under various boundary conditions. Kodai Math J, 2014, 37 (3): 532- 543 |
| 20 | Ding J . Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions. Bound Value Probl, 2013, 2013 (237): 1- 12 |
| 21 | Zhang Q Y , Jiang Z X , Zheng S N . Blow-up time estimate for a degenerate diffusion equation with gradient absorption. Appl Math Comput, 2015, 251, 331- 335 |
| 22 | Payne L E , Song J C . Lower bounds for blow-up in a model of chemotaxis. J Math Anal Appl, 2012, 385 (2): 672- 676 |
| 23 | Xu X J , Ye Z . Life span of solutions with large initial data for a class of coupled parabolic systems. Z Angew Math Phys, 2013, 64 (3): 705- 717 |
| 24 | Payne L E , Philippin G A . Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3 (4): 325- 330 |
| 25 | Tao X Y , Fang Z B . Blow-up phenomenon for a nonlinear reaction-diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74 (10): 2520- 2528 |
| 26 | Bao A G , Song X F . Bounds for the blow-up time of the solution to a parabolic system with nonlocal factors in nonlinearities. Comput Math Appl, 2016, 71 (3): 723- 729 |
| 27 | Wang N , Song X F , Lv X S . Estimates for the blow-up time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195 |
| 28 | Petersson J H . On global existence for semilinear parabolic systems. Nonlinear Anal, 2005, 60 (2): 337- 347 |
| 29 | Rasheed M A, Chlebik M. The blow-up rate estimates for a reaction diffusion system with gradient terms. 2012, arXiv: 1211.6500 |
| 30 | Souplet P , Weissler F B . Poincaré's inequality and global solutions of a nonlinear parabolic equation. Ann Inst H Poincaré Anal Nonlin, 1999, 16 (3): 337- 373 |