数学物理学报 ›› 2020, Vol. 40 ›› Issue (3): 824-832.
• 论文 • 上一篇
收稿日期:
2018-12-24
出版日期:
2020-06-26
发布日期:
2020-07-15
通讯作者:
罗日才
E-mail:hxs509@163.com;luoricai@163.com;wang4896@126.com
作者简介:
黄星寿, E-mail:基金资助:
Xingshou Huang(),Ricai Luo*(
),Wusheng Wang(
)
Received:
2018-12-24
Online:
2020-06-26
Published:
2020-07-15
Contact:
Ricai Luo
E-mail:hxs509@163.com;luoricai@163.com;wang4896@126.com
Supported by:
摘要:
在时滞神经网络的研究中,人们通常是利用构造李亚普诺夫函数来分析系统的稳定性.该文研究了一类具有放缩时滞的神经网络,利用Gronwall积分不等式研究了该放缩时滞神经网络的稳定性问题,得出该系统全局指数稳定性的新判据,并通过实例仿真验证了结果的有效性和可行性.
中图分类号:
黄星寿,罗日才,王五生. 基于Gronwall积分不等式的比例时滞神经网络稳定性分析[J]. 数学物理学报, 2020, 40(3): 824-832.
Xingshou Huang,Ricai Luo,Wusheng Wang. Stability Analysis for a Class Neural Network with Proportional Delay Based on the Gronwall Integral Inequality[J]. Acta mathematica scientia,Series A, 2020, 40(3): 824-832.
1 |
Ye H , Michel A N , Wang K . Global stability and local stability of Hopfield neural networks with delays. Physical Review E, 1994, 50 (5): 4206- 4213
doi: 10.1103/PhysRevE.50.4206 |
2 | Marcus C M , Westervelt R M . Stability of analog neural networks with delay. Physical Review A, 1989, 39 (1): 347- 359 |
3 |
Liao X , Liao Y . Stability of Hopfield-type neural networks Ⅱ. Science in China Series A Mathematics, 1997, 40 (8): 813- 816
doi: 10.1007/BF02878920 |
4 |
Cao J , Zhou D . Stability analysis of delayed cellular neural networks. Neural Networks, 1998, 11 (9): 1601- 1605
doi: 10.1016/S0893-6080(98)00080-X |
5 |
Driessche P , Zou X . Global attractivity in delayed Hopfield neural network models. Society for Industrial and Applied Mathematics, 1998, 58 (6): 1878- 1890
doi: 10.1137/S0036139997321219 |
6 | Cao J . Periodic oscillation and exponential stability of delayed CNNs. Physics Letters A, 2000, 270 (3/4): 157- 163 |
7 |
Xu D , Zhao H , Zhu H . Global dynamics of Hopfield neural networks involving variable delays. Computers and Mathematics with Applications, 2001, 42, 39- 45
doi: 10.1016/S0898-1221(01)00128-6 |
8 |
Chen A , Cao J , Huang L . An estimation of upperbound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE Transactions on Circuits and Systems I, 2002, 49 (7): 1028- 1032
doi: 10.1109/TCSI.2002.800841 |
9 |
Wang L , Xu D . Stability analysis of Hopfield neural networks with time delay. Applied Mathematics and Mechanics, 2002, 23 (1): 65- 70
doi: 10.1007/BF02437731 |
10 |
Zhao H , Wang L , Ma C . Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay. Nonlinear Analysis Real World Applications, 2008, 9 (1): 103- 113
doi: 10.1016/j.nonrwa.2006.09.005 |
11 |
Orman Z . New sufficient conditions for global stability of neutral-type neural networks with time delays. Neurocomputing, 2012, 97, 141- 148
doi: 10.1016/j.neucom.2012.05.016 |
12 |
Zhou L . Dissipativity of a class of cellular neural networks with proportional delays. Nonlinear Dynamics, 2013, 73, 1895- 1903
doi: 10.1007/s11071-013-0912-x |
13 |
Zhou L , Chen X , Yang Y . Asymptotic stability of cellular neural networks with multiple proportional delays. Applied Mathematics and Computation, 2014, 229, 457- 466
doi: 10.1016/j.amc.2013.12.061 |
14 | Zhou L . Global asymptotic stability of cellular neural networks with proportional delays. Nonlinear Dynamics, 2014, 77 (1/2): 41- 47 |
15 |
Zheng C , Li N , Cao J . Matrix measure based stability criteria for high-order neural networks with proportional delay. Neurocomputing, 2015, 149, 1149- 1154
doi: 10.1016/j.neucom.2014.09.016 |
16 |
Hien L V , Son D T . Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays. Applied Mathematics and Computation, 2015, 251, 14- 23
doi: 10.1016/j.amc.2014.11.044 |
17 |
Liu B . Global exponential convergence of non-autonomous cellular neural networks with multi-proportional delays. Neurocomputing, 2016, 191, 352- 355
doi: 10.1016/j.neucom.2016.01.046 |
18 | Yu Y . Exponential stability of pseudo almost periodic solutions for cellular neural networks with multi-proportional delays. Neural Processing Letters, 2016, 45 (1): 141- 151 |
19 |
Zhou L . Global exponential stability of a class of impulsive recurrent neural networks with proportional delays via fixed point theory. Journal of the Franklin Institute, 2016, 353 (2): 561- 575
doi: 10.1016/j.jfranklin.2015.10.021 |
20 |
Xu C , Li P . Global exponential convergence of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays. Chaos, Solitons and Fractals, 2017, 96, 139- 144
doi: 10.1016/j.chaos.2017.01.012 |
21 |
Cui N , Jiang H , Hu C , Abdurahman A . Global asymptotic and robust stability of inertial neural networks with proportional delays. Neurocomputing, 2018, 272, 326- 333
doi: 10.1016/j.neucom.2017.07.001 |
22 |
Guan K . Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control. Neurocomputing, 2018, 283, 256- 265
doi: 10.1016/j.neucom.2018.01.027 |
23 |
罗日才, 许弘雷, 王五生. 一类新的变时滞中立型神经网络的全局渐近稳定性条件. 数学物理学报, 2015, 35A (3): 634- 640
doi: 10.3969/j.issn.1003-3998.2015.03.017 |
24 | 张若军, 王林山. 具有分布时滞的细胞神经网络的概周期解. 数学物理学报, 2011, 31A (2): 422- 429 |
25 |
Gronwall T H . Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, 1919, 20, 292- 296
doi: 10.2307/1967124 |
26 |
Bellman R . The stability of solutions of linear differential equations. Duke Mathematical Journal, 1943, 10, 643- 647
doi: 10.1215/S0012-7094-43-01059-2 |
27 |
Lipovan O . A retarded Gronwall-like inequality and its applications. Journal of Mathematical Analysis and Applications, 2000, 252, 389- 401
doi: 10.1006/jmaa.2000.7085 |
28 |
Abdeldaim A , Yakout M . On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Applied Mathematics and Computation, 2011, 217, 7887- 7899
doi: 10.1016/j.amc.2011.02.093 |
29 | Abdeldaim A . Nonlinear retarded integral inequalities of type and applications. Journal of Mathematical Inequalities, 2016, 10 (1): 285- 299 |
[1] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[2] | 章春国, 孙宝楠, 付煜之, 于欣. 具有局部阻尼的二维 Mindlin-Timoshenko 板系统的镇定[J]. 数学物理学报, 2024, 44(4): 946-959. |
[3] | 吴泽康, 王晓丽, 韩文静, 李金红. 物理信息神经网络求解五阶 emKdV 方程的正反问题[J]. 数学物理学报, 2024, 44(2): 484-499. |
[4] | 庞玉婷, 赵东霞. 星形明渠网络系统的 PDP 反馈控制和指数镇定[J]. 数学物理学报, 2023, 43(6): 1803-1813. |
[5] | 庞玉婷,赵东霞,赵鑫,高彩霞. 一类 2 |
[6] | 何旭阳,毛明志,张腾飞. 一类具有泊松跳的脉冲中立型随机泛函微分方程的存在性及稳定性研究[J]. 数学物理学报, 2023, 43(4): 1221-1243. |
[7] | 范东霞,赵东霞,史娜,王婷婷. 一类扩散波方程的PDP反馈控制和稳定性分析[J]. 数学物理学报, 2021, 41(4): 1088-1096. |
[8] | 邹瑶,曾春娜,胡进. 具有不连续激活函数的复数神经网络的全局指数周期性[J]. 数学物理学报, 2019, 39(5): 1192-1204. |
[9] | 周庆华,万立,刘杰. 具有变时滞的神经型Hopfield神经网络的全局吸引子研究[J]. 数学物理学报, 2019, 39(4): 823-831. |
[10] | 熊君, 李俊民, 何超. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
[11] | 殷春, 周士伟, 吴姗姗, 程玉华, 魏修岭, 王伟. 带有离散分布式延迟神经网络的不等时滞分割稳定性分析方法[J]. 数学物理学报, 2017, 37(2): 374-389. |
[12] | 张丽萍, 刘东毅, 张国山. 带有内部扰动的Timoshenko梁系统的指数稳定性[J]. 数学物理学报, 2017, 37(1): 185-198. |
[13] | 阿卜杜杰力力·阿卜杜热合曼, 蒋海军, 滕志东. 具有混合变时滞的脉冲Cohen-Grossberg神经网络的指数同步[J]. 数学物理学报, 2015, 35(3): 545-557. |
[14] | 罗日才, 许弘雷, 王五生. 一类新的变时滞中立型神经网络的全局渐近稳定性条件[J]. 数学物理学报, 2015, 35(3): 634-640. |
[15] | 张永全, 李有梅, 曹飞龙, 徐宗本. 高斯核正则化学习算法的泛化误差[J]. 数学物理学报, 2014, 34(5): 1049-1060. |
|