| 1 | Colin M , Jeanjean L , Squassina M . Stability and instability results for standing waves of quasilinear Schr?dinger equations. Nonlinearity, 2010, 23, 1353- 1385 | | 2 | Colin M . On the local well-posedness of quasilinear Schr?dinger equations in arbitrary space dimension. Comm Partial Differential Equations, 2002, 27, 325- 354 | | 3 | Kenig C E , Ponce G , Vega L . The Cauchy problem for quasi-linear Schr?dinger equations. Invent Math, 2004, 158, 343- 388 | | 4 | Poppenberg M . On the local well posedness of quasi-linear Schr?dinger equations in arbitrary space dimension. J Differential Equations, 2001, 172, 83- 115 | | 5 | Glassey R T . On the blowing up of solutions to the Cauchy problem for nonlinear Schr?dinger equations. J Math Phys, 1977, 18, 1794- 1797 | | 6 | Cao P . Global existence and uniqueness for the magnetic Hartree equation. J Evol Equ, 2011, 11, 811- 825 | | 7 | Cho Y , Hajaiej H , Hwang G , Ozawa T . On the Cauchy problem of fractional Schr?dinger equation with Hartree type nonlinearity. Funkcialaj Ekvacioj, 2013, 56, 193- 224 | | 8 | Cho Y . Short-range scattering of Hartree type fractional NLS. J Differential Equations, 2017, 262, 116- 144 | | 9 | Ivanov A , Venkov G . Existence and uniqueness result for the Schr?dinger-Poisson system and Hartree equation in Sobolev spaces. J Evol Equ, 2008, 8, 217- 229 | | 10 | Zagatti S . The Cauchy problem for Hartree-Fock time-dependent equations. Annales de L'I H P Section A, 1992, 56, 357- 374 | | 11 | Cazenave T. Semilinear Schr?dinger Equations. New York: Amer Math Soc, 2003 | | 12 | Bouard A de , Hayashi N , Saut J C . Global existence of small solutions to a relativistic nonlinear Schr?dinger equation. Commun Math Phys, 1997, 189, 73- 105 | | 13 | Guo B , Chen J , Su F . The "blow up" problem for a quasilinear Schr?dinger equation. J Math Phys, 2005, 46, 073510 | | 14 | Song X F, Wang Z Q. Global existence and blowup phenomena as well as asymptotic behavior for the solution of quasilinear Schr?dinger equation. 2018, arXiv: 1811.05136 |
|