| 1 | Auslender A , Teboulle M . Asymptotic Cones and Functions in Optimization and Variational Inequalities. New York: Springer-Verlag, 2003 | | 2 | Auslender A . Existence of optimal solutions and duality results under weak conditions. Math Program Ser A, 2000, 88, 45- 59 | | 3 | Bo? R I , Grad S M , Wanka G . Generalized Moreau-Rockafellar results for composed convex functions. Optim, 2009, 58, 917- 933 | | 4 | Bo? R I , Jeyakumar V , Li G Y . Robust duality in parametric convex optimization. Set-Valued Var Anal, 2013, 21, 177- 189 | | 5 | Ban L , Song W . Duality gap of the conic convex constrained optimization problems in normed spaces. Math Program Ser A, 2009, 119, 195- 214 | | 6 | Fang D H , Ansari Q H , Zhao X P . Constraint qualifications and zero duality gap properties in conical programming involving composite functions. J Nonlinear Convex Anal, 2018, 19, 53- 69 | | 7 | Fang D H , Li C , Ng K F . Constraint qualifications for extended Farkas's Lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20, 1311- 1332 | | 8 | Fang D H , Li C , Ng K F . Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Anal, 2010, 73, 1143- 1159 | | 9 | Fang D H , Li C , Yao J C . Stable Lagrange dualities for robust conical programming. J Nonlinear Convex Anal, 2015, 16, 2141- 2158 | | 10 | Fang D H , Zhang Y . Extended Farkas's lemmas and strong dualities for conic programming involving composite functions. J Optim Theory Appl, 2018, 176, 351- 376 | | 11 | 胡玲莉, 方东辉. 带锥约束的复合优化问题的最优性条件. 数学物理学报, 2018, 38A (6): 1112- 1121 | | 11 | Hu L L , Fang D H . Optimality conditions for composite optimization problems with conical constraints. Acta Math Sci, 2018, 38A (6): 1112- 1121 | | 12 | Jeyakumar V , Li G Y . New dual constraint qualifications characterizing zero duality gaps of convex programs and semidefinite programs. Nonlinear Anal, 2009, 71, 2239- 2249 | | 13 | Jeyakumar V , Li G Y . Strong duality in robust convex programming:complete characterizations. SIAM J Optim, 2010, 20, 3384- 3407 | | 14 | Jeyakumar V , Li G Y , Wang J H . Some robust convex programs without a duality gap. J convex Anal, 2013, 20, 377- 394 | | 15 | Jeyakumar V , Wolkowicz H . Zero duality gaps in infinite-dimensional programming. J Optim Theory Appl, 1990, 67, 87- 108 | | 16 | Li G Y , Jeyakumar V , Lee G M . Robust conjugate duality for convex optimization under uncertainty with application to data classification. Nonlinear Anal, 2011, 74, 2327- 2341 | | 17 | Long X J , Sun X K , Peng Z Y . Approximate optimality conditions for composite convex optimization problems. J Oper Res Soc China, 2017, 5, 469- 485 | | 18 | 孙祥凯. 复合凸优化问题全对偶性的等价刻画. 吉林大学学报(理学版), 2015, 53, 33- 36 | | 18 | Sun X K . Some characterizations of total duality for a composed convex optimization. Journal of Jilin University(Science Edition), 2015, 53, 33- 36 | | 19 | Zǎlinescu C . Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002 | | 20 | 赵丹, 孙祥凯. 复合凸优化问题的稳定强对偶. 吉林大学学报(理学版), 2013, 51, 441- 443 | | 20 | Zhao D , Sun X K . Stable strong duality for a composed convex optimization problem. Journal of Jilin University (Science Edition), 2013, 51, 441- 443 |
|