| 1 | Aggul M , Connors J M , Erkmen D , Labovsky A E . A defect-deferred correction method for fluid-fluid interaction. SIAM J Numer Anal, 2018, 56 (4): 2484- 2512 | | 2 | Arnold D N , Brezzi F , Fortin M . A stable finite element for the Stokes equations. Calcolo, 1984, 21 (4): 337- 344 | | 3 | Bernardi C , Chacon T , Lewandowski R , Murat F . A model for two coupled turbulent fluids Ⅱ:Numerical analysis of a spectral discretization. SIAM J Numer Anal, 2003, 40 (6): 2368- 2394 | | 4 | Bernardi C , Rebello T C , Mármol M G , et al. A model for two coupled turbulent fluids Ⅲ:Numerical approximation by finite elements. Numer Math, 2004, 98 (1): 33- 66 | | 5 | Blasco J , Codina R . Error estimates for a viscosity-splitting finite element method for the incompressible Navier-Stokes equations. Appl Numer Math, 2004, 51, 1- 17 | | 6 | Blasco J , Codina R , Huerta A . A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int J Numer Methods Fluids, 1998, 28 (10): 1391- 1419 | | 7 | Bresch D , Koko J . Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids. Int J Appl Math Comput Sci, 2006, 16 (4): 419- 429 | | 8 | Chorin A J . Numerical solution of the Navier-Stokes equations. Math Comput, 1968, 22, 745- 762 | | 9 | Connors J M . An ensemble-based conventional turbulence model for fluid-fluid interaction. Inter J Numer Anal Model, 2018, 15 (4): 492- 519 | | 10 | Connors J M , Ganis B . Stability of algorithms for a two domain natural convection problem and observed model uncertainty. Comput Geosci, 2011, 15 (3): 509- 527 | | 11 | Connors J M , Howell J S . A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer Meth Part Differ Equ, 2012, 28 (4): 1283- 1308 | | 12 | Connors J M , Howell J S , Layton W J . Partitioned time stepping for a parabolic two domain problem. SIAM J Numer Anal, 2009, 47 (5): 3526- 3549 | | 13 | Connors J M , Howell J S , Layton W J . Decoupled time stepping methods for fluid-fluid interaction. SIAM J Numer Anal, 2012, 50 (3): 1297- 1319 | | 14 | Fernández M A , Gerbeau J , Smaldone S . Explicit coupling schemes for a fluid-fluid interaction problem arising in hemodynamics. SIAM J Sci Comput, 2014, 36 (6): A2557- A2583 | | 15 | Girault V , Rivíere B , Wheeler M F . A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM:Math Model Numer Anal, 2005, 39 (6): 1115- 1147 | | 16 | Guermond J L , Salgado A . Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J Numer Anal, 2011, 49 (3): 917- 944 | | 17 | Guillén-González F , Redondo-Neble M V . New error estimates for a viscosity splitting scheme in time for the three-dimensional Navier-Stokes equations. IMA J Numer Anal, 2011, 31 (2): 556- 579 | | 18 | Guillén-González F , Redondo-Neble M V . Spatial error estimates for a finite element viscosity-splitting scheme for the Navier-Stokes equations. Inter J Numer Anal Model, 2013, 10 (4): 826- 844 | | 19 | Guillén-González F , Redondo-Neble M V . Convergence and error estimates of viscosity-splitting finite-element schemes for the primitive equations. Appl Numer Math, 2017, 111, 219- 245 | | 20 | Heywood J , Rannacher R . Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ:Error analysis for second order time discretizations. SIAM J Numer Anal, 1990, 27 (2): 353- 384 | | 21 | Li J , Huang P , Zhang C , Guo G . A linear, decoupled fractional time-stepping method for the nonlinear fluid-fluid interaction. Numer Methods Part Differ Equa, 2019, 35, 1873- 1889 | | 22 | Li J , Huang P , Su J , Chen Z . A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier-Stokes/Navier-Stokes interaction model. Bound Value Probl, 2019 | | 23 | Lions J L , Temam R , Wang S . Models for the coupled atmosphere and ocean (CAO Ⅰ). Comput Mech Adv, 1993, 1, 5- 54 | | 24 | Lions J L , Temam R , Wang S . Numerical analysis of the coupled atmosphere-ocean models (CAO Ⅱ). Comput Mech Adv, 1993, 1, 55- 119 | | 25 | Lions J L , Temam R , Wang S . Mathematical theory for the coupled atmosphere-ocean models (CAO Ⅲ). J Math Pures Appl, 1995, 74, 105- 163 | | 26 | Qian L Z , Chen J R , Feng X L . Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems. Numer Meth Part Differ Equa, 2017, 33 (3): 704- 723 | | 27 | Quarteroni A , Saleri F , Veneziani A . Factorization methods for the numerical approximation of Navier-Stokes equations. Comput Methods Appl Mech Eng, 2000, 188 (1-3): 505- 526 | | 28 | Saleri F , Veneziani A . Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (1): 174- 194 | | 29 | Strikwerda J C , Young S L . The accuracy of the fractional step method. SIAM J Numer Anal, 1999, 37 (1): 37- 47 | | 30 | Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. Amsterdam: North Holland, 1984 | | 31 | Zhang Y H , Hou Y R , Shan L . Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem. SIAM J Numer Anal, 2016, 54 (5): 2833- 2867 | | 32 | Zhang Y H , Hou Y R , Shan L . Error estimates of a decoupled algorithm for a fluid-fluid interaction problem. J Comput Appl Math, 2018, 333, 266- 291 | | 33 | Zhang T , Pedro D , Yuan J Y . A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem. Adv Comput Math, 2015, 41 (1): 149- 190 | | 34 | Zhang T , Qian Y X . The time viscosity-splitting method for the Boussinesq problem. J Math Anal Appl, 2017, 445 (1): 186- 211 | | 35 | Zhang T , Qian Y X , Yuan J Y . The fully discrete fractional-step method for the Oldroyd model. Appl Numer Math, 2018, 129, 83- 103 |
|