| 1 | Adler J . Chemotaxis in bacteria. Science, 1966, 153 (3737): 708- 716 | | 2 | Deng C , Li T . Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework. Journal of Differential Equations, 2014, 257 (5): 1311- 1332 | | 3 | Fontelos M A , Friedman A , Hu B . Mathematical analysis of a model for the initiation of angiogenesis. SIAM Journal on Mathematical Analysis, 2002, 33 (6): 1330- 1355 | | 4 | Guo J , Xiao J X , Zhao H J , Zhu C J . Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Mathematica Scientia, 2009, 29 (3): 629- 641 | | 5 | Hao C C . Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces. Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (5): 825- 834 | | 6 | Hou Q Q , Liu C J , Wang Y G , Wang Z A . Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis:one-dimensional case. SIAM Journal on Mathematical Analysis, 2018, 50 (3): 3058- 3091 | | 7 | Hou Q Q , Wang Z A , Zhao K . Boundary layer problem on a hyperbolic system arising from chemotaxis. Journal of Differential Equations, 2016, 261 (9): 5035- 5070 | | 8 | Hou Q Q , Wang Z A . Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane. Journal de Mathematiques Pures et Appliquees, 2019, 130: 251- 287 | | 9 | Jin H Y , Li J Y , Wang Z A . Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. Journal of Differential Equations, 2013, 255 (2): 193- 219 | | 10 | Keller E F , Segel L A . Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26 (3): 399- 415 | | 11 | Keller E F , Segel L A . Traveling bands of chemotactic bacteria:a theoretical analysis. Journal of Theoretical Biology, 1971, 30 (2): 235- 248 | | 12 | Levine H A , Sleeman B D . A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (3): 683- 730 | | 13 | Li D , Li T , Zhao K . On a hyperbolic-parabolic system modeling chemotaxis. Mathematical Models and Methods in Applied Sciences, 2011, 21 (8): 1631- 1650 | | 14 | Li H , Zhao K . Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. Journal of Differential Equations, 2015, 258 (2): 302- 338 | | 15 | Li T , Pan R H , Zhao K . Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM Journal on Applied Mathematics, 2012, 72 (1): 417- 443 | | 16 | Li T , Wang Z A . Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM Journal on Applied Mathematics, 2009, 70 (5): 1522- 1541 | | 17 | Li T , Wang Z A . Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Mathematical Models and Methods in Applied Sciences, 2010, 20 (11): 1967- 1998 | | 18 | Li T , Wang Z A . Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. Journal of Differential Equations, 2011, 250 (3): 1310- 1333 | | 19 | Li T , Wang Z A . Steadily propagating waves of a chemotaxis model. Mathematical Biosciences, 2012, 240 (2): 161- 168 | | 20 | Li J Y , Wang L N , Zhang K J . Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Mathematical Methods in the Applied Sciences, 2013, 36 (14): 1862- 1877 | | 21 | Martinez V R , Wang Z A , Zhao K . Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana University Mathematics Journal, 2018, 67 (4): 1383- 1424 | | 22 | Ni W M . Diffusion, cross-diffusion, and their spike-layer steady states. Notices of the Amer Math Soc, 1998, 45 (1): 9- 18 | | 23 | Othmer H G , Stevens A . Aggregation, blowup, and collapse:the ABC's of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (4): 1044- 1081 | | 24 | Peng H Y , Wen H Y , Zhu C J . Global well-posedness and zero diffusion limit of classical solutions to the 3D conservation laws arising in chemotaxis. Zeitschrift für angewandte Mathematik und Physik, 2014, 65 (6): 1167- 1188 | | 25 | Peng Y , Xiang Z . Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary. Mathematical Models and Methods in Applied Sciences, 2018, 28: 869- 920 | | 26 | Peng Y , Xiang Z . Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions. Journal of Differential Equations, 2019, 267: 1277- 1321 | | 27 | Rebholz L G , Wang D H , Wang Z A , et al. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems-Series A, 2019, 39 (7): 3789- 3838 | | 28 | Tao Y , Wang L , Wang Z A . Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems-Series B, 2013, 18 (3): 821- 845 | | 29 | Wang Y, Winkler M, Xiang Z. The fast signal diffusion limit in Keller-Segel (-fluid) systems. Calculus of Variations and Partial Differential Equations, 2019, 58, Article number: 196 | | 30 | Tian Y , Xiang Z . Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition. Journal of Differential Equations, 2020, 269 (3): 2012- 2056 | | 31 | Wang Z A , Xiang Z , Yu P . Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. Journal of Differential Equations, 2016, 260 (3): 2225- 2258 | | 32 | Wang Z A , Zhao K . Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure and Applied Analysis, 2013, 12 (6): 3027- 3046 | | 33 | Wu C , Xiang Z . The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system. Journal of Differential Equations, 2019, 267: 938- 978 | | 34 | Wu C , Xiang Z . Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. Mathematical Models and Methods in Applied Sciences, 2020, 30 (7): 1325- 1374 | | 35 | Zhang M , Zhu C J . Global existence of solutions to a hyperbolic-parabolic system. Proceedings of the American Mathematical Society, 2007, 135 (4): 1017- 1027 | | 36 | Zhu N , Liu Z R , Martinez V R , Zhao K . Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model. SIAM Journal on Mathematical Analysis, 2018, 50 (5): 5380- 5425 |
|