数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 562-576.
• 论文 • 上一篇
收稿日期:
2020-02-14
出版日期:
2021-04-26
发布日期:
2021-04-29
通讯作者:
高飞
E-mail:lingleah@whut.edu.cn;gaof@whut.edu.cn
作者简介:
李喜玲, E-mail: 基金资助:
Xiling Li(),Fei Gao*(
),Wenqin Li
Received:
2020-02-14
Online:
2021-04-26
Published:
2021-04-29
Contact:
Fei Gao
E-mail:lingleah@whut.edu.cn;gaof@whut.edu.cn
Supported by:
摘要:
基于相关的病理知识,研究了具有免疫时滞和非线性发生率的分数阶HBV感染模型的稳定性问题.讨论了系统解的存在唯一性、正性和有界性.此外,利用泛函微分方程和Caputo分数阶导数的稳定性理论,通过分析模型在平衡点处超越特征方程根的分布情况,讨论了时滞对平衡点稳定性的影响.研究结果表明:时滞不影响无病平衡点的稳定性,但会诱发地方病平衡点的稳定性,并且在其附近产生小振幅的周期解.通过构造合适的Lyapunov函数,分析了无病平衡点的全局渐进稳定性.最后,利用分数阶时滞稳定性原理,设计相应线性控制器,对分数阶HBV感染模型进行有效控制.
中图分类号:
李喜玲,高飞,李文琴. 具有免疫时滞的分数阶HBV感染模型稳定性分析[J]. 数学物理学报, 2021, 41(2): 562-576.
Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay[J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576.
1 | Marion P L, Robinson W S. Hepadna Viruses: Hepatitis B and Related Viruses//Cooper M, et al. Curr Topic Microbiol Immu, 1983, 105: 99-121 |
2 | Lavanchy D . Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol, 2005, 34 (Suppl 1): S1- S3 |
3 |
Nowak M A , Bonhoeffer S , Hill A M , et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci, 1996, 93 (9): 4398- 4402
doi: 10.1073/pnas.93.9.4398 |
4 |
Nowak M A , Bangham C R M . Population dynamics of immune responses to persistent viruses. Science, 1996, 272 (5258): 74- 79
doi: 10.1126/science.272.5258.74 |
5 | Min L Q , Su Y M , Kuang Y . Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky MT J Math, 2008, 38 (5): 1573- 1585 |
6 |
Gourley S A , Kuang Y , Nagy J D . Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dynam, 2008, 2 (2): 140- 153
doi: 10.1080/17513750701769873 |
7 |
马庆波, 向华. 具有时滞的HBV病毒动力学模型稳定性分析. 生物信息学, 2009, 7 (4): 326- 329
doi: 10.3969/j.issn.1672-5565.2009.04.022 |
Ma Q B , Xiang H . Stability analysis of HBV virus dynamics model with delay. Bioinformatics, 2009, 7 (4): 326- 329
doi: 10.3969/j.issn.1672-5565.2009.04.022 |
|
8 |
Wang K F , Fan A J , Torres A . Global properties of an improved hepatitis B virus model. Nonlinear Anal-Real, 2010, 11 (4): 3131- 3138
doi: 10.1016/j.nonrwa.2009.11.008 |
9 |
Xie Q Z , Huang D W , Zhang S D , et al. Analysis of a viral infection model with delayed immune response. Appl Math Model, 2010, 34 (9): 2388- 2395
doi: 10.1016/j.apm.2009.11.005 |
10 | Vargas-De-Leon C . Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay. Appl Math Comput, 2012, 219 (1): 389- 398 |
11 |
Wang Y , Liu X N . Dynamical behaviors of a delayed HBV infection model with logistic hepatocyte growth, cure rate and CTL immune response. Japan J Ind Appl Math, 2015, 32 (3): 575- 593
doi: 10.1007/s13160-015-0184-6 |
12 |
靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (1): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
Jing X J , Zhao A M , Liu G R . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
|
13 |
Dokoumetzidis A , Macheras P . Fractional kinetics in drug absorption and disposition processes. Journal of Pharmacokinetics and Pharmacodynamics, 2009, 36 (2): 165- 178
doi: 10.1007/s10928-009-9116-x |
14 |
Srivastava H M , Saad K M , Khader M M . An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the ebola virus. Chaos Soliton Fract, 2020, 140, 110174
doi: 10.1016/j.chaos.2020.110174 |
15 |
朱波, 刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性. 数学物理学报, 2019, 39A (1): 105- 113
doi: 10.3969/j.issn.1003-3998.2019.01.010 |
Zhu B , Liu L S . Existence and uniqueness of the mild solutions for a class of fractional non-autonomous evolution equations with impulses. Acta Math Sci, 2019, 39A (1): 105- 113
doi: 10.3969/j.issn.1003-3998.2019.01.010 |
|
16 |
Stanislavsky A A . Memory effects and macroscopic manifestation of randomness. Phys Rev E, 2000, 61 (5): 4752- 4759
doi: 10.1103/PhysRevE.61.4752 |
17 |
Vargas-De-Leon C . Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun Nonlinear Sci Numer Simul, 2015, 24, 75- 85
doi: 10.1016/j.cnsns.2014.12.013 |
18 |
Salman S M , Yousef A M . On a fractional-order model for HBV infection with cure of infected cells. Journal of the Egyptian Mathematical Society, 2017, 25 (4): 445- 451
doi: 10.1016/j.joems.2017.06.003 |
19 |
Ullah S , Khan M A , Farooq M . A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative. Eur Phys J Plus, 2018, 133 (6): 237
doi: 10.1140/epjp/i2018-12072-4 |
20 |
Ullah S , Khan M A , Farooq M . Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative. Eur Phys J Plus, 2018, 133 (8): 313
doi: 10.1140/epjp/i2018-12120-1 |
21 | 高飞, 胡道楠, 童恒庆, 等. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析. 物理学报, 2018, 67 (15): 303- 313 |
Gao F , Hu D N , Tong H Q , et al. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Phys Sin, 2018, 67 (15): 303- 313 | |
22 |
Wang X H , Wang Z , Huang X , et al. Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions. Int J Bifurcat Chaos, 2018, 28 (14): 1850180
doi: 10.1142/S0218127418501808 |
23 | Podlubny I . Fractional Differential Equations. New York: Academic Press, 1999 |
24 | Diethelm K . The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo type. New York: Springer, 2010 |
25 | Huo R , Wang X L , Wu G R . Large existence and uniqueness of solutions for a class of fractional integral-differential equations with time-delay. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014, (35): 169 |
26 |
Li Y , Chen Y Q , Podlubny I . Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45 (8): 1965- 1969
doi: 10.1016/j.automatica.2009.04.003 |
27 |
Li Y , Chen Y Q , Podlubny I . Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59 (5): 1810- 1821
doi: 10.1016/j.camwa.2009.08.019 |
28 |
Hu J B , Lu G P , Zhang S B , et al. Lyapunov stability theorem about fractional system without and with delay. Commun Nonlinear Sci, 2015, 20 (3): 905- 913
doi: 10.1016/j.cnsns.2014.05.013 |
29 |
Aguila-Camacho N , Duarte-Mermoud M A , Gallegos J A . Lyapunov functions for fractional order systems. Commun Nonlinear Sci, 2014, 19 (9): 2951- 2957
doi: 10.1016/j.cnsns.2014.01.022 |
30 | 张琪昌. 分岔与混沌理论及应用. 天津: 天津大学出版社, 2005 |
Zhang Q C . Bifurcation and Chaos Theory and Its Application. Tianjin: Tianjin University Press, 2005 | |
31 | Cooke K L , Van Den Driessche P . On zeroes of some transcendental equations. Funkc Ekvacioj, 1986, 29 (1): 77- 90 |
32 | Matignon D . Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2, 963- 968 |
33 |
庄科俊. 一类时滞乙肝病毒模型的稳定性分析. 中北大学学报(自然科学版), 2015, (2): 122- 125
doi: 10.3969/j.issn.1673-3193.2015.02.006 |
Zhuang K J . Stability analysis for a hepatitis B virus model with time delay. Journal of North University of China(Natural Science Edition), 2015, (2): 122- 125
doi: 10.3969/j.issn.1673-3193.2015.02.006 |
|
34 | Van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180 (1/2): 29- 48 |
35 |
Tam J . Delay effect in a model for virus replication. Math Med Bilo: A Journal of the IMA, 1999, 16 (1): 29- 37
doi: 10.1093/imammb/16.1.29 |
36 |
Li M Y , Shu H . Global dynamics of an in-host viral model with intracellular delay. B Math Biol, 2010, 72 (6): 1492- 1505
doi: 10.1007/s11538-010-9503-x |
37 | Ruan S , Wei J . On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynam Cont Dis Ser A, 2003, 10, 863- 874 |
38 | Lasalle J P . The Stability of Dynamical Systems. Philadelphia: SIMA, 1976 |
[1] | 马晶晶, 魏娜. 上半空间分数阶 |
[2] | 倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143. |
[3] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[4] | 梁青. 两类带 Markov 切换的随机比例泛函微分方程全局解的存在唯一性和稳定性[J]. 数学物理学报, 2025, 45(4): 1184-1205. |
[5] | 祝鹏, 陈艳萍, 徐先宇. 非均匀网格上时间分数阶扩散—波动方程的 BDF2 型有限元方法[J]. 数学物理学报, 2025, 45(4): 1268-1290. |
[6] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[7] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[8] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
[9] | 杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135. |
[10] | 吕学琴, 何松岩, 王世宇. 基于再生核和有限差分法求解变系数时间分数阶对流扩散方程[J]. 数学物理学报, 2025, 45(1): 153-164. |
[11] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[12] | 潘柔, 陈林. 一类分数阶 |
[13] | 张伟, 陈柯元, 毋祎, 倪晋波. 多项 Caputo 分数阶微分方程 Dirichlet 问题 Lyapunov 型不等式[J]. 数学物理学报, 2024, 44(6): 1433-1444. |
[14] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[15] | 肖江龙, 宋永利, 夏永辉. 一个扩散模型中恐惧效应与集群行为协同诱导的时空动力学研究[J]. 数学物理学报, 2024, 44(6): 1577-1594. |
|