| 1 | Baudouin L , Cerpa E , Crépeau E , Mercado A . On the determination of the principal coefficient from boundary measurements in a KdV equation. J Inverse Ill-Posed Prob, 2014, 22, 819- 845 | | 2 | Bellassoued M , Yamamoto M . Lipschitz stability in determining density and two Lamé coefficients. J Math Anal Appl, 2017, 329, 1240- 1259 | | 3 | Bellassoued M , Yamamoto M . Carleman estimates and an inverse heat source problem for the thermoelasticity system. Inverse Probl, 2011, 27, 015006 | | 4 | Bellassoued M , Yamamoto M . Carleman estimate and inverse source problem for Biot's equations describing wave propagation in porous media. Inverse Probl, 2013, 29, 115002 | | 5 | Bukhgeim A L , Klibanov M V . Uniqueness in the large of a class of multidimensional inverse problems. Soviet Math Dokl, 1981, 17, 244- 247 | | 6 | Caicedo M A , Capistrano-Filho R , Zhang B Y . Neumann boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J Control Optim, 2017, 55, 3503- 3532 | | 7 | Capistrano-Filho R , Pazoto A F , Rosier L . Internal controllability of the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim Calc Var, 2015, 21, 1076- 1107 | | 8 | Carréno N , Guerrero S . Uniform null controllability of a linear KdV equation using two controls. J Math Anal Appl, 2018, 457, 922- 943 | | 9 | Cerpa E , Rivas I , Zhang B Y . Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J Control Optim, 2013, 51, 2976- 3010 | | 10 | Chen M . Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain. Boundary Value Problems, 2007, 2017, 48 | | 11 | Coron J M , Crépeau E . Exact boundary controllability of a nonlinear KdV equation with a critical length. J Eur Math Soc, 2004, 31, 367- 398 | | 12 | Dias F , Il'ichev A . Interfacial waves with free-surface boundary conditions: an approach via a model equation. Physica D, 2001, 150, 278- 300 | | 13 | Fochesato C , Dias F , Grimshaw R . Generalized solitary waves and fronts in coupled Korteweg-de Vries systems. Physica D, 2005, 210, 96- 117 | | 14 | Gao P . Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation. Bull Aust Math Soc, 2014, 90, 283- 294 | | 15 | Glass O , Guerrero S . Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot Anal, 2008, 60, 61- 100 | | 16 | Grimshaw R , Pelinovsky E , Talipova T . The modified Korteweg-de Vries equation in the theory of the large-amplitude internal waves. Nonlinear Process Geophys, 1997, 4, 237- 250 | | 17 | Imanuvilov O Y . Controllability of parabolic equations. Sbornik Math, 1995, 186, 879- 900 | | 18 | Imanuvilov O Y , Yamamoto M . Carleman estimates for the non-stationary Lemé system and application to an inverse problem. ESAIM Control Optim Calc Var, 2005, 11, 1- 56 | | 19 | Imanuvilov O Y , Yamamoto M . Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl, 2001, 17, 717- 728 | | 20 | Isakov V . Inverse Problems for Partial Differential Equations. Berlin: Springer-Verlag, 1998 | | 21 | Isakov V , Kim N . Carleman estimates with second large parameter and applications to elasticity with residual stress. Applicationes Mathematicae, 2008, 35, 447- 465 | | 22 | Klibanov M V , Timonov A . Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Utrecht: VSP, 2004 | | 23 | Klibanov M V . Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J Inverse Ill-Posed Prob, 2013, 21, 477- 560 | | 24 | Klibanov M V , Kolesov A E . Convexification of a 3-D coefficient inverse scattering problem. Computers and Mathematics with Applications, 2019, 77, 1681- 1702 | | 25 | Klibanov M V , Kolesov A E , Nguyen L , Sullivan A . Globally strictly convex cost functional for a 1D inverse medium scattering problem with experimental data. SIAM J Applied Mathematics, 2017, 77, 1733- 1755 | | 26 | Kumarasamy S , Hasanov A . An inverse problem for the KdV equation with Neumann boundary measured data. J Inverse Ill-Posed Prob, 2018, 26, 133- 151 | | 27 | Romanov V G , Yamamoto M . Recovering a Lamé kernel in viscoelastic equation by a single boundary measurement. Appl Anal, 2010, 89, 377- 390 | | 28 | Rosier L . Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J Control Optim, 2000, 39, 331- 351 | | 29 | Rousseau J , Lebeau G . On Carleman estimates for elliptic and parabolic operators Applications to unique continuation and control of parabolic equations. ESAIM Control Optim Calc Var, 2012, 18, 712- 747 | | 30 | Saut J , Scheurer B . Unique continuation for some evolution equations. J Differential Equations, 1987, 66, 118- 139 | | 31 | Tang S , Zhang X . Null controllability for forward and backward stochastic parabolic equations. SIAM J Control Optim, 2009, 48, 2191- 2216 | | 32 | Wu B , Gao Y , Wang Z , Chen Q . Unique continuation for a reaction-diffusion system with cross diffusion. J Inverse Ill-Posed Prob, 2019, 27, 511- 525 | | 33 | Wu B , Liu J . Conditional stability and uniqueness for determining two coefficients in a hyperbolic-parabolic system. Inverse Probl, 2011, 27, 075013 | | 34 | Wu B , Yu J , Wang Z . A coefficient identification problem for a mathematical model related to ductal carcinoma in situ. Stud Appl Math, 2019, 143, 356- 372 | | 35 | Yamamoto M . Carleman estimates for parabolic equations and applications. Inverse Probl, 2009, 25, 123013 |
|