| 1 | Pikovski A S , Rabinovich M I , Trakhtengerts Yu V . Onset of stochasticity in decay confinement of parametric instability. Soviet Physics-JETP, 1978, 47 (4): 715- 719 | | 2 | Boichenko V A, Leonov G A, Reitmann V. Dimension Theory for Ordinary Differential Equations. Stuttgart: Teubner, 2005 | | 3 | Neukirch S . Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability. Physical Review E, 2001, 63 (3): 036202 | | 4 | Krishchenko A , Starkov K . Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability. Physics Letters A, 2007, 367 (1): 65- 72 | | 5 | Llibre J , Messias M , Silva P R . On the global dynamics of the Rabinovich system. Journal of Physics A: Mathemetical and Theorerical, 2008, 41 (27): 275210 | | 6 | Lyapunov A M . The general problems of the stability of motion. Int J Control, 1992, 55 (3): 531- 773 | | 7 | Parks P C . A.M. Lyapunov's stability theory-100 years on. IMA J Math Control and Inform, 1992, 9 (4): 275- 303 | | 8 | Fradkov A L, Pogromsky A Y. Introduction to Control of Oscillation and Chaos. Singapore: World Scientific, 1998 | | 9 | Leonov G A. Strange Attractors and Classical Stability Theory. St Petersburg: St Petersburg University Press, 2009 | | 10 | Kosambi D D . Parallelism and path-spaces. Mathematische Zeitschrift, 1933, 37 (1): 608- 618 | | 11 | Cartan E . Observations sur le mémoire précédent. Mathematische Zeitschrift, 1933, 37 (1): 619- 622 | | 12 | Chern S S . Sur la geometrie d'un systeme d'equations differentielles du second ordre. Bulletin des Sciences Mathematiques, 1939, 63, 206- 212 | | 13 | Boehmer C G , Harko T , Sabau V S . Jacobi stability analysis of dynamical systems-applications in gravitation and cosmology. Advances in Theoretical and Mathematical Physics, 2010, 16 (4): 1145- 1196 | | 14 | Leonov G A , Kuznetsov N V , Vagaitsev V I . Hidden attractor in smooth Chua systems. Physica D, 2012, 241 (18): 1482- 1486 | | 15 | Maria D B , Dino B , Piero C , Giuseppe P . Dynamical behavior of Lagrangian systems on Finsler manifolds. Physical Review E, 1997, 55 (6): 6448- 6458 | | 16 | 杨纪华, 张二丽. n-维分段光滑微分系统的周期轨分支. 数学物理学报, 2020, 40A (4): 1043- 1052 | | 16 | Yang J , Zhang E . Bifurcation of periodic orbits of an n-dimensional piecewise smooth differential system. Acta Math Sci, 2020, 40A (4): 1043- 1052 | | 17 | 黄燮桢, 刘永建, 黄秋健. 一类新混沌系统的几何分析. 数学物理学报, 2019, 39A (2): 339- 347 | | 17 | Huang X , Liu Y , Huang Q . Geometric analysis of a class of the new chaotic system. Acta Math Sci, 2019, 39A (2): 339- 347 | | 18 | 邵长旭, 刘树堂. 三种群捕食-食饵模型的分形特征与控制. 数学物理学报, 2019, 39A (4): 951- 962 | | 18 | Shao C , Liu S . Fractal feature and control three-species predator-prey model. Acta Math Sci, 2019, 39A (4): 951- 962 | | 19 | 张二丽, 邢玉清. 一类三次Hamiton系统的极限环分支. 数学物理学报, 2017, 37A (4): 825- 833 | | 19 | Zhang E , Xing Y . Limit cycle bifurcations for a kind of Hamiton systems of degree three. Acta Math Sci, 2017, 37A (4): 825- 833 | | 20 | Yamasaki K , Yajima T . Lotka-Volterra system and KCC theory: Differential geometric structure of competitions and predations. Nonlinear Analysis: Real World Applications, 2013, 14 (4): 1845- 1853 | | 21 | Sabau V S . Some remarks on Jacobi stability. Nonlinear Analysis: Theory Methods & Applications, 2005, 63 (5-7): e143- e153 | | 22 | Harko T , Sabau V S . Jacobi stability of the vacuum in the static spherically symmetric brane world models. Physical Review D, 2008, 77 (10): 104009 | | 23 | Lake M J , Harko T . Dynamical behavior and Jacobi stability analysis of wound strings. European Physical Journal C: Particles and Fields, 2016, 76, 1- 26 | | 24 | Abolghasem H . Jacobi stability of circular orbits in central forces. Journal of Dynamical Systems and Geometric Theories, 2012, 10 (2): 197- 214 | | 25 | Bohmer C G , Harko T . Nonlinear stability analysis of the Emden-Fowler equation. Journal of Nonlinear Mathematical Physics, 2010, 17 (4): 503- 516 | | 26 | Gupta M K , Yadav C K . KCC theory and its application in a tumor growth model. Mathematical Methods in the Applied Sciences, 2017, 40, 7470- 7487 | | 27 | Antonelli P L , Bucataru I . New results about the geometric invariants in KCC-theory. Analele Stiintifice ale Universitatii Al I Cuza din Iasi-Matematica, 2001, 47 (2): 405- 420 | | 28 | Harko T , Ho C Y , Leung C S , Yip S . Jacobi stability analysis of the Lorenz system. International Journal of Geometric Methods in Modern Physics, 2015, 12 (7): 55- 72 | | 29 | Abolghasem H . Jacobi stability of Hamiltonian system. International Journal of Pure and Applied Mathematics, 2013, 87 (1): 181- 194 | | 30 | Gupta M K , Yadav C K . Jacobi stability analysis of R?ssler system. International Journal of Bifurcation and Chaos, 2017, 27 (4): 63- 76 | | 31 | Yajima T , Nagahama H . Geometrical unified theory of Rikitake system and KCC-theory. Nonlinear Analysis, 2009, 71, 203- 210 | | 32 | Gupta M K , Yadav C K . Jacobi stability analysis of Rikitake system. International Journal of Geometric Methods in Modern Physics, 2016, 13 (7): 1650098 | | 33 | Gupta M K , Yadav C K . Jacobi stability analysis of modified Chua circuit system. International Journal of Geometric Methods in Modern Physics, 2017, 14 (6): 121- 142 | | 34 | Kumar M , Mishra T N , Tiwari B . Stability analysis of Navier-Stokes system. International Journal of Geometric Methods in Modern Physics, 2019, 16 (10): 1950157 | | 35 | Huang Q , Liu A , Liu Y . Jacobi stability analysis of Chen system. International Journal of Bifurcation and Chaos, 2019, 29 (10): 1950139 | | 36 | Chen B , Liu Y , Wei Z , Feng C . New insights into a chaotic system with only a Lyapunovstable equilibrium. Mathematical Methods in the Applied Sciences, 2020, 43 (2): 1- 18 | | 37 | Liu Y, Chen H, Lu X, et al. Homoclinic orbits and Jacobi stability on the orbits of Maxwell-Bloch system. Applicable Analysis, 2020. DOI: 10.1080/00036811.2020.1854235 | | 38 | Antonelli P L. Handbook of Finsler Geometry. Dordrecht: Kluwer Academic, 2003 |
|