| 1 | Chen M F . From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 2004 |
| 2 | Meyn S P , Tweedie R L . Markov Chains and Stochastic Stability. London: Springer, 1992 |
| 3 | Lindvall T . Lectures on the Coupling Method. New York: Wiley, 1992 |
| 4 | 张水利. 一般状态空间跳过程的随机稳定性[D]. 武汉: 湖北大学, 2014 |
| 4 | Zhang Shuili. Stochastic Stability of Jump Processes in General State Space[D]. Wuhan: Hubei University, 2014 |
| 5 | 王健. Levy型算子所生成马氏过程的稳定性. 数学年刊, 2011, 32A (1): 33- 50 |
| 5 | Wang Jian . Stability of Markov processes generated by levy type operators. Annals of Mathematics, 2011, 32A (1): 33- 50 |
| 6 | 朱志锋, 张绍义. 用概率距离研究非时齐马氏链的收敛性. 数学物理学报, 2018, 38A (5): 963- 969 |
| 6 | Zhu Zhifeng , Zhang Shaoyi . Study on the convergence of non-homogeneous Markov chains by probability distance. Acta Mathematica Scientia, 2018, 38A (5): 963- 969 |
| 7 | 朱志锋, 张绍义. 用耦合方法研究马氏链f-指数遍历. 数学学报, 2019, 62 (3): 287- 292 |
| 7 | Zhu Zhifeng , Zhang Shaoyi . Study on f-exponential ergodicity of Markov chain by coupling method. Acta Mathematica Sinica, 2019, 62 (3): 287- 292 |
| 8 | Zhang S Y . Existence of the optimal measurable coupling and ergodicity for markov processes. Science in China, 1999, 42A, 58- 67 |
| 9 | Zhang S Y . Regularity and existence of invariant measures for jump processes. Acta Mathematica Sinica, 2005, 48, 785- 788 |
| 10 | Gutjahr W J , Pflug G C . Simulated annealing for noisy cost functions. Journal of Global Optimization, 1996, 8, 1- 13 |
| 11 | Ahmed M A , Alkhamis T M . Simulation-based optimization using simulated an nealing with ranking and selection. Computers Operations Research, 2002, 29 (4): 387- 402 |