| 1 | Chihara T S . An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, 1978 | | 2 | Freud G . Othogonal Polynomials. Budapest, Hungary: Pergamon, 1971 | | 3 | Van Assche W . Asymptotics for Orthogonal Polynomials. Berlin: Springer, 1987 | | 4 | Freud G . On the coefficients in the recursion formulae of orthogonal polynomials. Proc R Irish Acad, 1976, 76, 1- 6 | | 5 | Magnus A P. A Proof of Freud's Conjecture About the Orthogonal Polynomials Related to $|x|^{\rho}\exp(-x^{2m})$, for Integer $m$//Brezinski C, Draux A, Magnus A P, et al. Orthogoanl Polynomials and Applications. Berlin: Springer-Verlag, 1985: 362-372 | | 6 | Lubinsky D , Mhaskar H , Saff E . A proof of Freud's conjecture for exponential weights. Constr Approx, 1988, 4, 65- 83 | | 7 | Magnus A P . On Freud's equations for the exponential weights. J Approx Theory, 1986, 46, 65- 99 | | 8 | Clarkson P A , Jordaan K , Kelil A . A generalized Freud weight. Stud Appl Math, 2016, 136, 288- 320 | | 9 | Clarkson P A , Jordaan K . Properties of generalized Freud polynomials. J Approx Theory, 2018, 25, 148- 175 | | 10 | Bleher P , Its A R . Semiclassical asymptotics of orthogonal polynomials: Riemann-Hilbert problem, and universality in the matrix model. Ann of Math, 1999, 150, 185- 266 | | 11 | Bleher P , Its A R . Double scaling limit in the random matrix model: the Riemann-Hilbert approach. Comm Pure Appl Math, 2003, 56, 433- 516 | | 12 | Clarkson P A , Jordaan K . The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation. Constr Approx, 2014, 39, 223- 254 | | 13 | Levin E , Lubinsky D . Orthogonal Polynomials with Exponential Weights. New York: Springer-Verlag, 2001 | | 14 | Lyu S L , Chen Y . The largest eigenvalue distribution of the Laguerre unitary ensemble. Acta Math Scientia, 2017, 37 (2): 439- 462 | | 15 | Wong R , Zhang L . Global asymptotics of orthogonal polynomials associated with $|x|^{2\alpha}{\rm e}^{-Q(x)}$. J Approx Theory, 2010, 162, 723- 765 | | 16 | Bonan S , Clark D S . Estimates of the orthogonal polynomials with weight $\exp(-x^m)$, $m$ an even positive integer. J Approx Theory, 1986, 46, 408- 410 | | 17 | Bonan S , Nevai P . Orthogonal polynomials and their derivatives I. J Approx Theory, 1984, 40, 134- 147 | | 18 | Chen Y , Pruessner G . Orthogonal polynomials with discontinuous weights. J Phys A: Math Gen, 2005, 38, 191- 198 | | 19 | Wang D , Zhu M K , Chen Y . On semi-classical orthogonal polynomials associated with a Freud - type weight. Math Meth Appl Sci, 2020, 43 (8): 5295- 5313 | | 20 | Vein P R , Dale P . Determinants and Their Applications in Mathematical Physics. New York: Springer-Verlag, 1999 | | 21 | Van Assche W. Discrete Painlevé Equations for Recurrence Coefficients of Orthogonal Polynomials//Elaydi S, Cushing J, Lasser R, et al. Difference Equations, Special Functions and Orthogonal Polynomials. Hackensack: World Scientific, 2007: 687-725 | | 22 | Cresswell C , Joshi N . The discrete first, second and thirty-fourth Painlevé hierarchies. J Phys A: Math Gen, 1999, 32, 655- 669 | | 23 | Damelin S B . Asymptotics of recurrence coefficients for orthonormal polynomials on the line-Magnus method revisited. Math Comp, 2004, 73, 191- 209 | | 24 | Chen Y , Ismail M E H . Thermodynamic relations of the Hermitian matrix ensembles. J Phys A: Math Gen, 1997, 30, 6633- 6654 | | 25 | Chen Y , Lawrence N . On the linear statistics of Hermitian random matrices. J Phys A: Math Gen, 1998, 31, 1141- 1152 | | 26 | Chen Y , Mckay M R . Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems. IEEE Trans Inform Theory, 2012, 58, 4594- 4634 | | 27 | Zhu M K , Chen Y . On properties of a deformed Freud weight. Random Matrices Theory Appl, 2019, 8, 1950004 | | 28 | Berg C , Chen Y , Ismail M E H . Small eigenvalues of large Hankel matrices: The indeterminate case. Math Scand, 2002, 91, 67- 81 | | 29 | Berg C , Szwarc R . The smallest eigenvalue of Hankel matrices. Const Approx, 2011, 34, 107- 133 | | 30 | Chen Y , Lawrence N D . Small eigenvalues of large Hankel matrices. J Phys A: Math Gen, 1999, 32, 7305- 7315 | | 31 | Chen Y , Lubinsky D S . Smallest eigenvalues of Hankel matrices for exponential weights. J Math Anal Appl, 2004, 293, 476- 495 | | 32 | Emmart N , Chen Y , Weems C . Computing the smallest eigenvalue of large ill-conditioned Hankel matrices. Commun Comput Phys, 2015, 18, 104- 124 | | 33 | Szeg? G . On some Hermitian forms associated with two given curves of the complex plane. Trans Amer Math Soc, 1936, 40, 450- 461 | | 34 | Widom H , Wilf H S . Small eigenvalues of large Hankel matrices. Proc Amer Math Soc, 1966, 17, 338- 344 | | 35 | Zhu M K , Chen Y , Emmart N , Weems C . The smallest eigenvalue of large Hankel matrices. Appl Math Comput, 2018, 334, 375- 387 | | 36 | Zhu M K , Emmart N , Chen Y , Weems C . The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight. Math Meth Appl Sci, 2019, 42, 3272- 3288 | | 37 | Chen Y , Sikorowski J , Zhu M K . Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation. Appl Math Comput, 2019, 363, 124628- 124646 | | 38 | Zhu M K , Chen Y , Li C Z . The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight. J Math Phys, 2020, 61, 073502 |
|