数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 1024-1032.
收稿日期:
2021-01-11
出版日期:
2021-08-26
发布日期:
2021-08-09
通讯作者:
张伟
E-mail:zhangweiazyw@163.com
基金资助:
Jifeng Zhang,Wei Zhang*(),Jinbo Ni,Dandan Ren
Received:
2021-01-11
Online:
2021-08-26
Published:
2021-08-09
Contact:
Wei Zhang
E-mail:zhangweiazyw@163.com
Supported by:
摘要:
该文研究了带p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题,通过利用Schaefer不动点定理得出了解存在的充分性条件,并举例说明主要结论.该文所得结果推广和丰富了已有的相关工作.
中图分类号:
张纪凤,张伟,倪晋波,任丹丹. 带p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性[J]. 数学物理学报, 2021, 41(4): 1024-1032.
Jifeng Zhang,Wei Zhang,Jinbo Ni,Dandan Ren. Existence of Solutions for Anti-Periodic Boundary Value Problems of Fractional Langevin Equation with p(t)-Laplacian Operator[J]. Acta mathematica scientia,Series A, 2021, 41(4): 1024-1032.
1 | 林宗涵. 热力学与统计物理学. 北京: 北京大学出版社, 2007 |
Lin Z H . Thermodynamics and Statistical Physics. Beijing: Peking University Press, 2007 | |
2 | 陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010 |
Chen W , Sun H G , Li X C . Fractional Derivative Modeling of Mechanical and Engineering Problems. Beijing: Science Press, 2010 | |
3 |
Lutz E . Fractional Langevin equation. Phys Rev E, 2001, 64 (5): 051106
doi: 10.1103/PhysRevE.64.051106 |
4 | Burov S, Barkai E. The critical exponent of the fractional Langevin equation is ac ≈ 0.402. 2007, arXiv: 0712.3407 |
5 |
刘玉记. 含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性. 数学物理学报, 2020, 40A (1): 103- 131
doi: 10.3969/j.issn.1003-3998.2020.01.009 |
Liu Y J . Solvability of BVPs for impulsive fractional Langevin type equations involving three Riemann-Liouville fractional derivatives. Acta Math Sci, 2020, 40A (1): 103- 131
doi: 10.3969/j.issn.1003-3998.2020.01.009 |
|
6 |
蒲琳涓, 杨晓忠, 孙淑珍. 一类分数阶Langevin方程预估校正算法的数值分析. 数学物理学报, 2020, 40A (4): 1018- 1028
doi: 10.3969/j.issn.1003-3998.2020.04.017 |
Pu L J , Yang X Z , Sun S Z . Numerical analysis of a class of fractional Langevin equation by predictor-corrector method. Acta Math Sci, 2020, 40A (4): 1018- 1028
doi: 10.3969/j.issn.1003-3998.2020.04.017 |
|
7 |
Ahmad B , Nieto J J , Alsaedi A , El-Shahed M . A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal Real World Appl, 2012, 13 (2): 599- 606
doi: 10.1016/j.nonrwa.2011.07.052 |
8 |
Zhou H , Alzabut J , Yang L . On fractional Langevin differential equations with anti-periodic boundary conditions. Eur Phys J Special Topics, 2017, 226 (16-18): 3577- 3590
doi: 10.1140/epjst/e2018-00082-0 |
9 |
Fazli H , Nieto J J . Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals, 2018, 114, 332- 337
doi: 10.1016/j.chaos.2018.07.009 |
10 |
Wang G T , Qin J F , Zhang L H , Baleanu D . Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions. Chaos Solitons Fractals, 2020, 131, 109476
doi: 10.1016/j.chaos.2019.109476 |
11 |
Zhai C B , Li P P . Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders. Mediterr J Math, 2018, 15, 164
doi: 10.1007/s00009-018-1213-x |
12 |
Baghani O . On fractional Langevin equation involving two fractional orders. Commun Nonlinear Sci Numer Simul, 2017, 42, 675- 681
doi: 10.1016/j.cnsns.2016.05.023 |
13 | Wang J R , Li X Z . Ulam-Hyers stability of fractional Langevin equations. Appl Math Comput, 2015, 258, 72- 83 |
14 |
Baghani H . An analytical improvement of a study of nonlinear Langevin equation involving two fractional orders in different intervals. J Fixed Point Theory Appl, 2019, 21 (4): 95
doi: 10.1007/s11784-019-0734-7 |
15 |
Zhou Z F , Qiao Y . Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. Bound Value Probl, 2018, 2018, 152
doi: 10.1186/s13661-018-1070-3 |
16 | Salem A , Alzahrani F , Alghamdi B . Langevin equation involving two fractional orders with three-point boundary conditions. Differential Integral Equations, 2020, 33 (3/4): 163- 180 |
17 | Shen T F , Liu W B . Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator. J Nonlinear Sci Appl, 2016, 9 (7): 5000- 5010 |
18 |
Xue T T , Liu W B , Shen T F . Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)-Laplacian operator. Bound Value Probl, 2017, 2017, 169
doi: 10.1186/s13661-017-0900-z |
19 |
Shen X H , Shen T F . Existence of solutions for Erdélyi-Kober fractional integral boundary value problems with p(t)-Laplacian operator. Adv Difference Equa, 2020, 2020, 565
doi: 10.1186/s13662-020-03015-y |
20 |
Tang X S , Wang X C , Wang Z W , Ouyang P C . The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator. J Appl Math Comput, 2019, 61 (1/2): 559- 572
doi: 10.1007/s12190-019-01264-z |
21 |
Tang X S , Luo J Y , Zhou S , Yan C Y . Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator. Ric Mat, 2020,
doi: 10.1007/s11587-020-00542-4 |
22 |
Wang G T , Ren X Y , Zhang L H , Ahmad B . Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model. IEEE Access, 2019, 7, 109833- 109839
doi: 10.1109/ACCESS.2019.2933865 |
23 |
Chen Y M , Levine S , Rao M . Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66 (4): 1383- 1406
doi: 10.1137/050624522 |
24 | Růžička M . Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000 |
25 | Zhikov V V . Averaging of functionals of the calculus of variations and elasticity theory. Izv Akad Nauk SSSR Ser Mat, 1986, 50 (4): 675- 710 |
26 |
Zhang Q H . Existence of solutions for weighted p(r)-Laplacian system boundary value problems. J Math Anal Appl, 2007, 327 (1): 127- 141
doi: 10.1016/j.jmaa.2006.03.087 |
27 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006, |
28 | Zhou Y , Wang J R , Zhang L . Basic Theory of Fractional Differential Equations. Second edition. Singapore: World Scientific, 2017 |
[1] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[2] | 张伟, 陈柯元, 毋祎, 倪晋波. 多项 Caputo 分数阶微分方程 Dirichlet 问题 Lyapunov 型不等式[J]. 数学物理学报, 2024, 44(6): 1433-1444. |
[3] | 宾茂君, 施翠云. 半线性Riemann-Liouville分数阶发展方程反馈时间最优控制[J]. 数学物理学报, 2024, 44(3): 687-698. |
[4] | 王文霞. 带有 $p$-Laplacian 算子的分数阶非线性积分边值问题的唯一正解与和算子方法[J]. 数学物理学报, 2023, 43(6): 1731-1743. |
[5] | 徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68. |
[6] | 韩晓玲,蔡蕙泽,杨虎军. 星图上非线性分数阶微分方程边值问题解的存在唯一性[J]. 数学物理学报, 2022, 42(1): 139-156. |
[7] | 任晶,翟成波. 基于变分法的回火分数阶脉冲微分系统分析[J]. 数学物理学报, 2021, 41(2): 415-426. |
[8] | 巩全壹,么焕民. 再生核移位勒让德基函数法求解分数阶微分方程[J]. 数学物理学报, 2020, 40(2): 441-451. |
[9] | 王春. 一类分数阶系统的稳定性和Laplace变换[J]. 数学物理学报, 2019, 39(1): 49-58. |
[10] | 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报, 2018, 38(6): 1162-1172. |
[11] | 王惠文, 曾红娟, 李芳. 多基点分数阶微分方程脉冲边值问题解的存在性[J]. 数学物理学报, 2018, 38(4): 697-715. |
[12] | Marko Kostić, 李成刚, 李淼. 抽象多项Riemann-Liouville分数阶微分方程[J]. 数学物理学报, 2016, 36(4): 601-622. |
[13] | 胡雷, 张淑琴, 侍爱玲. 分数阶微分方程耦合系统共振边值问题解的存在性[J]. 数学物理学报, 2014, 34(5): 1313-1326. |
[14] | 郝晓红, 程智龙, 周宗福. 一类非线性分数阶多点边值问题的可解性[J]. 数学物理学报, 2014, 34(3): 655-668. |
[15] | 舒小保, 戴斌祥. 半线性中立型分数阶微分方程S -渐近ω周期解[J]. 数学物理学报, 2014, 34(1): 16-26. |
|