| 1 | Kooi B , Ezio V . Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Mathematical Biosciences, 2016, 274, 58- 72 | | 2 | Ai S , Du Y , Rui P . Traveling waves for a generalized Holling-Tanner predator-prey model. Journal of Differential Equations, 2017, 263, 7782- 7814 | | 3 | Rao F , Carlos C , Kang Y . Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components. Journal of Mathematical Analysis and Applications, 2018, 461, 1177- 1214 | | 4 | Kang Y , Kumar S , Messan K . A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14, 843- 880 | | 5 | Wang H , Silogini T , Philippe G . Refuge-mediated predator-prey dynamics and biomass pyramids. Mathematical Biosciences, 2018, 298, 29- 45 | | 6 | Zhang F Q , Chen Y M , Li J Q . Dynamical analysis of a stage-structured predator-prey model with cannibalism. Mathematical Biosciences, 2019, 307, 33- 41 | | 7 | 邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102 | | 7 | Deng D , Li Y . Traveling wave solutions of a nonlocal spreading SIR infectious disease model with treatment term. Acta Math Sci, 2020, 40A (1): 72- 102 | | 8 | 曹忠威, 文香丹, 冯微, 祖力. 一类具有随机扰动的非自治SIRI流行病模型的动力学行为. 数学物理学报, 2020, 40A (1): 221- 232 | | 8 | Cao Z W , Wen X D , Feng W , Zu L . Dynamic behavior of a nonautonomous SIRI epidemic model with random perturbations. Acta Math Sci, 2020, 40A (1): 221- 232 | | 9 | Rajasekar S P , Pitchaimani M , Zhu Q X . Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Physica A: Statistical Mechanics and its Applications, 2019, 535, 122300 | | 10 | Rajasekar S P , Pitchaimani M , Zhu Q X . Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment. Physica A: Statistical Mechanics and its Applications, 2020, 538, 122649 | | 11 | Hu Z X , Ma W B , Ruan S G . Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Mathematical Biosciences, 2012, 238, 12- 20 | | 12 | Qiu Z P , Michael Y , Shen Z . Global dynamics of an infinite dimensional epidemic model with nonlocal state structures. Journal of Differential Equations, 2018, 265, 5262- 5296 | | 13 | Rajasekar S P , Pitchaimani M . Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses. Chaos, Solitons & Fractals, 2019, 118, 207- 221 | | 14 | Cai Y L , Kang Y , Banerjee M , Wang W M . A stochastic SIRS epidemic model with infectious force under intervention strategies. Journal of Differential Equations, 2015, 259, 7463- 7502 | | 15 | Liu Q , Jiang D Q , Hayat T , Alsadi A . Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence. Physica A: Statistical Mechanics and its Applications, 2018, 512, 849- 863 | | 16 | Rajasekar S P , Pitchaimani M . Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence. Applied Mathematics and Computation, 2020, 377, 125143 | | 17 | Zhang X B , Zhang X H . The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size. Applied Mathematical Modelling, 2021, 91, 749- 767 | | 18 | 袁海龙, 王玉萍, 李艳玲. 一类带有交叉扩散的捕食-食饵模型的正解. 数学物理学报, 2019, 39A (3): 545- 559 | | 18 | Yan H L , Wang Y P , Li Y L . Positive solution of a predator-prey model with cross diffusion. Acta Math Sci, 2019, 39A (3): 545- 559 | | 19 | Liu M , Du C , Deng M . Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ stochastic predator-prey model with impulsive toxicant input in polluted environments. Nonlinear Analysis: Hybrid Systems, 2018, 27, 177- 190 | | 20 | Zhuo X L , Zhang F X . Stability for a new discrete ratio-dependent predator-prey system. Qualitative Theory of Dynamical Systems, 2018, 17 (1): 189- 202 | | 21 | 王双明, 樊馨蔓, 张明军, 梁俊荣. 具周期性潜伏期的SEIR传染病模型的动力学. 数学物理学报, 2020, 40A (2): 527- 539 | | 21 | Wang S M , Fan X M , Zhang M J , Liang J R . Dynamics of a SEIR infectious disease model with periodic incubation periods. Acta Math Sci, 2020, 40A (2): 527- 539 | | 22 | Crowley P H , Martin E K . Functional responses and interference within and between year classes of a dragony population. Journal of the North American Benthological Society, 1989, 8, 211- 221 | | 23 | Wang W M , Cai Y L , et al. Periodic behavior in a FIV model with seasonality as well as environment fluctuations. Journal of the Franklin Institute, 2017, 354 (16): 7410- 7428 | | 24 | Wu S , Shi J , Wu B . Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. Journal of Differential Equations, 2016, 260 (7): 5847- 5874 | | 25 | Ghosh B , Zhdanova O L , Barman B , Frisman E Y . Dynamics of stage-structure predator-prey systems under density-dependent effect and mortality. Ecological Complexity, 2020, 41, 100812 | | 26 | Feng T , Qiu Z P . Global analysis of a stochastic TB model with vaccination and treatment. Discrete & Continuous Dynamical Systems-B, 2019, 24 (6): 2923- 2939 | | 27 | Xu C , Yuan S L , Zhang T H . Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Analysis: Hybrid Systems, 2018, 29, 373- 382 | | 28 | Durrett R . Stochastic Calculus: A Practical Introduction. Boca Raton, FL: CRC Press, 1996 | | 29 | Lv J L , Liu H , Zou X L . Stationary distribution and persistence of a stochastic predator-prey model with a functional response. Journal of Applied Analysis and Computation, 2019, 9 (1): 1- 11 | | 30 | Bashkirtseva I , Ryashko L . Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique. Physical Review E, 2011, 83, 061109 | | 31 | Bashkirtseva I , Ryashko L , Zaitseva S . Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 165- 176 | | 32 | Bashkirtseva I , Ryashko L . Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel'kov model. European Physical Journal B, 2017, 90 (1): 17 | | 33 | Bashkirtseva I , Ryashko L . Analysis of noise-induced phenomena in the nonlinear tumor-immune system. Physica A: Statistical Mechanics and its Applications, 2020, 549, 123923 | | 34 | Du N H , Nguyen D H , Yin G G . Conditions for permanence and ergodicity of certain stochastic predator-prey models. Journal of Applied Probability, 2016, 53 (1): 187- 202 | | 35 | Bashkirtseva I , Ryazanova T , Ryashko L . Confidence domains in the analysis of noise-induced transition to chaos for Goodwin model of business cycles. International Journal of Bifurcation and Chaos, 2014, 24, 1440020 | | 36 | Freidlin M I , Wentzell A D . Random Perturbations of Dynamical Systems. New York: Springer-Verlag, 1984 | | 37 | Bashkirtseva I , Ryashko L B . Sensitivity and chaos control for the forced nonlinear oscillations. Chaos, Solitons & Fractals, 2005, 26, 1437- 1451 | | 38 | Liu Z W , Shi N Z , Jiang D Q , Ji C Y . The asymptotic behavior of a stochastic Predator-Prey system with Holling Ⅱ functional response. Abstract and Applied Analysis, 2012, 2012, 1- 14 | | 39 | Qiu H , Liu M , Wang K , Wang Y . Dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response. Applied Mathematics and Computation, 2012, 219 (4): 2303- 2312 | | 40 | Cantrell R S , Cosner C . On the dynamics of Predator-Prey models with the Beddington-DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2001, 257 (1): 206- 222 | | 41 | Feng T , Qiu Z P , Meng X Z . Stochastic hepatitis C virus system with host immunity. Discrete and Continuous Dynamical Systems Series B, 2019, 24 (12): 6367- 6385 | | 42 | Wang L , Jiang D Q . A note on the stationary distribution of the stochastic chemostat model with general response functions. Applied Mathematics Letters, 2017, 73, 22- 28 |
|