数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 1235-1248.
• 论文 • 上一篇
收稿日期:
2020-06-11
出版日期:
2021-08-26
发布日期:
2021-08-09
通讯作者:
王德芬
E-mail:261337439@qq.com;wangdefen_2008@163.com
作者简介:
丰利香, E-mail: 基金资助:
Received:
2020-06-11
Online:
2021-08-26
Published:
2021-08-09
Contact:
Defen Wang
E-mail:261337439@qq.com;wangdefen_2008@163.com
Supported by:
摘要:
该文建立了一类具有隔离和不完全治疗的传染病模型.在模型中考虑了无意识和有意识的易感人群,通过基本再生数确定了模型的传播动力学,当$R_{0}≤1$时,无病平衡点是全局渐近稳定的,当$R_{0}>1$时,地方病平衡点是全局渐近稳定的,并通过数值模拟说明了理论分析的正确性.
中图分类号:
丰利香,王德芬. 具有隔离和不完全治疗的传染病模型的全局稳定性[J]. 数学物理学报, 2021, 41(4): 1235-1248.
Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment[J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248.
1 |
Zhou P , Yang X L , Wang X G , et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270- 273
doi: 10.1038/s41586-020-2012-7 |
2 |
Li Q , Guan X , Wu P , et al. Early transmission dynamics in Wuhan, China, of Noval Coronavirus-infected Pneumonia. N Engl J Med, 2020, 382, 1199- 1207
doi: 10.1056/NEJMoa2001316 |
3 |
Gao Q W , Zhuang J . Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model. Appl Math Comput, 2020,
doi: 10.1016/j.amc.2019.124584 |
4 | 邢伟, 高晋芳, 颜七笙, 等. 一类受媒体报道影响的SEIS传染病模型的定性分析. 西北大学学报(自然科学版), 2018, 48 (5): 639- 643 |
Xing W , Gao J F , Yan Q S , et al. An epidemic model with saturated media/psychological impact. Journal of Northwest University (Natural Science Edition), 2018, 48 (5): 639- 643 | |
5 | 严阅, 陈瑜, 刘可伋, 等. 基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测. 中国科学: 数学, 2020, 50 (3): 385- 392 |
Yan Y , Chen Y , Liu K , et al. Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system (in Chinese). Sci Sin Math, 2020, 50 (3): 385- 392 | |
6 | 王霞, 唐三一, 陈勇, 等. 新型冠状病毒肺炎疫情下武汉及周边地区何时复工? 数据驱动的网络模型分析. 中国科学: 数学, 2020, 50 (7): 969- 978 |
Wand X , Tang S Y , Chen Y , et al. When will be the resumption of work in wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis (in Chinese). Sci Sin Math, 2020, 50 (7): 969- 978 | |
7 | Xing Y , Zhang L , Wang X . Modeling and stability of epidemic model with free-living pathogens growing in the environment. J Appl Anal Comput, 2020, 10 (1): 55- 70 |
8 |
Liu S , Zhang L , Xing Y . Dynamics of a stochastic heroin epidemic model. J Comput Appl Math, 2019, 351, 260- 269
doi: 10.1016/j.cam.2018.11.005 |
9 |
邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
|
10 |
曹忠威, 文香丹, 冯徽, 等. 一类具有随机扰动的非自治SIRI流行病模型的动力学行为. 数学物理学报, 2020, 40A (1): 221- 233
doi: 10.3969/j.issn.1003-3998.2020.01.017 |
Cao Z W , Wen X D , Feng W , et al. Dynamics of a nonautonomous SIRI epidemic model with random perturbations. Acta Math Sci, 2020, 40A (1): 221- 233
doi: 10.3969/j.issn.1003-3998.2020.01.017 |
|
11 |
Huo H F , Feng L X . Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Applied Mathematical Modelling, 2013, 37 (3): 1480- 1489
doi: 10.1016/j.apm.2012.04.013 |
12 |
Du Z W , Xu X K , Wu Y , et al. The serial interval of COVID-19 among publicly reported confirmed cases. medRxiv, 2020,
doi: 10.1101/2020.02.19.20025452 |
13 |
霍海峰, 邹明轩. 一类具有接种和隔离治疗的结核病模型的稳定性. 兰州理工大学学报, 2016, 42 (3): 150- 154
doi: 10.3969/j.issn.1673-5196.2016.03.030 |
Huo H F , Zou M X . Stability of a tuberculosis model with vaccination and isolation treatment. Journal of Lanzhou University of Technology, 2016, 42 (3): 150- 154
doi: 10.3969/j.issn.1673-5196.2016.03.030 |
|
14 | 张菊平, 李云, 靳祯, 等. 武汉市COVID-19疫情与易感人群软隔离强度关系分析. 应用数学学报, 2020, 43 (2): 162- 173 |
Zhang J P , Li Y , Jin Z , et al. Analysis of the relationship between transmission of COVID-19 in Wuhan and soft quarantine intensity in susceptible population. Acta Math Appl, 2020, 43 (2): 162- 173 | |
15 | 李倩, 肖燕妮, 唐三一, 等. COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析. 应用数学学报, 2020, 43 (2): 238- 250 |
Li Q , Xiao Y N , Tang S Y , et al. Modelling COVID-19 epidemic with time delay and analyzing the strategy of confirmed cases-driven contact tracing followed by quarantine. Acta Math Appl, 2020, 43 (2): 238- 250 | |
16 | Yang Y L , Li J Q , Ma Z E , Liu L J . Global stability of two models with incomplete for tuberculosis. Chaos, Solitons & Fractals, 2010, 43, 79- 85 |
17 |
Huo H F , Feng L X . Global stability of an epidemic model with incomplete treatment and vaccination. Discrete Dynamics in Nature and Society, 2012,
doi: 10.1155/2012/530267 |
18 | Yang X , Chen L . Permanence and positive periodic solution for the single-species nonautonomous delay diffusive model. Comput Math Appl, 1996, 32 (4): 109- 116 |
19 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180, 29- 48
doi: 10.1016/S0025-5564(02)00108-6 |
20 | LaSalle J P. The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. Philadelphia: SIAM, 1976 |
[1] | 武文斌, 任雪, 张冉. 具有时滞的离散扩散疫苗接种模型的行波解[J]. 数学物理学报, 2025, 45(3): 858-874. |
[2] | 吴鹏, 张帅, 方诚. 一类具有非局部扩散和空间异质性年龄-空间结构松材线虫病模型动力学分析[J]. 数学物理学报, 2025, 45(3): 946-959. |
[3] | 吴鹏, 方诚. 具有非局部扩散和空间异质性的年龄-空间结构HIV潜伏感染模型的动力学分析[J]. 数学物理学报, 2025, 45(1): 279-294. |
[4] | 杨红, 张晓光. 单纯复形上的随机 SIS 传染病模型[J]. 数学物理学报, 2024, 44(5): 1392-1399. |
[5] | 吴鹏, 方诚. 具有异质空间扩散的梅毒模型的阈值动力学分析与仿真[J]. 数学物理学报, 2024, 44(5): 1352-1367. |
[6] | 钟毅, 王毅, 蒋添合. 一类具有无症状感染和隔离的 SIAQR 传播模型动力学分析和最优控制[J]. 数学物理学报, 2023, 43(6): 1914-1928. |
[7] | 李丹,魏凤英,毛学荣. 具有媒体报道的 SVIR 传染病模型的生存性分析[J]. 数学物理学报, 2023, 43(5): 1595-1606. |
[8] | 吴鹏,王秀男,何泽荣. 一类具有 Dirichlet 边界条件的年龄-空间结构HIV/AIDS传染病模型的动力学分析[J]. 数学物理学报, 2023, 43(3): 970-984. |
[9] | 邹永辉,徐鑫. 二维可压缩Prandtl方程倒流点的存在性[J]. 数学物理学报, 2023, 43(3): 691-701. |
[10] | 刘利利, 王洪刚, 李雅芝. 考虑病毒DNA核衣壳和细胞间传播的一般HBV扩散模型[J]. 数学物理学报, 2023, 43(2): 604-624. |
[11] | 许越, 韩晓玲. 西藏自治区包虫病传播的数学建模及动力学分析[J]. 数学物理学报, 2023, 43(2): 646-656. |
[12] | 胡振祥,聂麟飞. 具有水平传播和环境传播的反应扩散传染病模型研究[J]. 数学物理学报, 2022, 42(6): 1849-1860. |
[13] | 赵彦军,孙晓辉,苏丽,李文轩. 具有Logistic增长和Beddington-DeAngelis发生率的随机SIRS传染病模型定性分析[J]. 数学物理学报, 2022, 42(6): 1861-1872. |
[14] | 王凯,赵洪涌. 一类具有时滞的反应扩散登革热传染病模型的行波解[J]. 数学物理学报, 2022, 42(4): 1209-1226. |
[15] | 张太雷,刘俊利,韩梦洁. 具有时滞和季节性的炭疽模型的动力学分析[J]. 数学物理学报, 2022, 42(3): 851-866. |
|