| 1 | Bartsch T , Ding Y . Homoclinic solutions of an infinite-dimensional Hamiltonian system. Math Z, 2002, 240, 289- 310 | | 2 | Clment P , Felmer P , Mitidieri E . Homoclinic orbits for a class of infinite dimensional Hamiltonian systems. Ann Sc Norm Super Pisa, 1997, 24, 367- 393 | | 3 | De Figueiredo D , Ding Y . Strongly indefinite functions and multiple solutions of elliptic systems. Trans Amer Math Soc, 2003, 355, 2973- 2989 | | 4 | De Figueiredo D , Felmer P L . On superquadiatic elliptic systems. Trans Amer Math Soc, 1994, 343, 97- 116 | | 5 | Ding Y , Luan S , Willem M . Solutions of a system of diffusion equations. J Fixed Point Theory Appl, 2007, 2, 117- 139 | | 6 | Ding Y . Variational Methods for Strongly Indefinite Problems. Singapore: World Scientific Press, 2008 | | 7 | Ding Y , Xu T . Effect of external potentials in a coupled system of multi-component incongruent diffusion. Topol Method Nonl Anal, 2019, 54, 715- 750 | | 8 | Ding Y , Xu T . Concentrating patterns of reaction-diffusion systems: a variational approach. Trans Amer Math Soc, 2007, 369, 97- 138 | | 9 | Gu L , Zhou H . An improved fountain Theorem and its application. Adv Nonlinear Stud, 2016, 17 (4): 727- 738 | | 10 | Guo Y , Zeng X , Zhou H . Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann I H Poincare-AN, 2016, 33 (3): 809- 828 | | 11 | It? S . Diffusion Equations. Providence, RI: American Mathematical Society, 1992 | | 12 | Vazquez J L. The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion//Bonforte M, Grillo G. Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Berlin: Springer, 2017: 205-278 | | 13 | Kryszewski W , Szulkin A . An infinite dimensional morse theorem with applications. Trans Amer Math Soc, 1997, 349, 3184- 3234 | | 14 | Li G , Szulkin A . An asymptotically periodic Schr?dinger equation with indefinite linear part. Commun Contemp Math, 2002, 4, 763- 776 | | 15 | Li G , Yang J . Asymptotically linear elliptic systems. Comm Partial Differential Equations, 2004, 29, 925- 954 | | 16 | Nagasawa M . Schr?dinger Equations and Diffusion Theory. Boston: Birkh?user, 1993 | | 17 | Saad M , Gomez J . Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel. Physica A, 2018, 509, 703- 716 | | 18 | Szulkin A , Weth T . Ground state solutions for some indefinite problems. J Funct Anal, 2009, 257, 3802- 3822 | | 19 | Tang X , Chen S , Lin X , Yu J . Ground state solutions of Nehari-Pankov type for Schr?dinger equations with local super-quadratic conditions. J Differ Equa, 2020, 268, 4663- 4690 | | 20 | Tang X . Non-Nehari manifold method for superlinear Schr?dinger equation. Taiwanese J Math, 2014, 18, 1957- 1979 | | 21 | Tang X, Chen S. Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 55, Article nomber: 110 | | 22 | Wang Z , Zhou H . Radial sign-changing solution for fractional Schrodinger equation. Discrete Cont Dyn-A, 2016, 36 (1): 499- 508 | | 23 | Wei Y , Yang M . Existence of solutions for a system of diffusion equations with spectrum point zero. Z Angew Math Phys, 2014, 65, 325- 337 | | 24 | Yang M , Shen Z , Ding Y . On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities. Chinese Ann Math, 2011, 32B (1): 45- 58 | | 25 | Yang M . Nonstationary homoclinic orbits for an infinite-dimensional Hamiltonian system. J Math Phys, 2010, 51, 102701 | | 26 | Zeng X , Zhang Y , Zhou H . Positive solutions for a quasilinear Schr?dinger equation involving Hardy potential and critical exponent. Commun Contemp Math, 2014, 16 (6): 1450034 | | 27 | Zhang J , Tang X , Zhang W . Ground state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal, 2014, 95, 1- 10 | | 28 | Zhao F , Ding Y . On a diffusion system with bounded potential. Discrete Contin Dyn Syst, 2009, 23, 1073- 1086 | | 29 | Zhao L , Zhao F . On ground state solutions for superlinear Hamiltonian elliptic systems. Z Angew Math Phys, 2013, 64, 403- 418 |
|