数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1372-1381.
收稿日期:
2021-01-11
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
欧阳柏平
E-mail:oytengfei79@tom.com;1246683963@qq.com
作者简介:
肖胜中, E-mail: 基金资助:
Baiping Ouyang1,*(),Shengzhong Xiao2(
)
Received:
2021-01-11
Online:
2021-10-26
Published:
2021-10-08
Contact:
Baiping Ouyang
E-mail:oytengfei79@tom.com;1246683963@qq.com
Supported by:
摘要:
研究了具有非线性记忆项的半线性双波动方程解的全局非存在性.通过建立辅助函数,运用非线性积分不等式相关的迭代方法,得到了解的生命跨度上界估计.
中图分类号:
欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381.
Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381.
1 | Chen W, Palmieri A. Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term//Cicognani M, Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Switzerland: Springer, 2021: 77-97 |
2 |
John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268
doi: 10.1007/BF01647974 |
3 |
Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Comm Pure Appl Math, 1980, 33, 501- 505
doi: 10.1002/cpa.3160330403 |
4 |
Strauss W A . Nonlinear scattering theory at low energy. J Functional Analysis, 1981, 41, 110- 133
doi: 10.1016/0022-1236(81)90063-X |
5 |
Glassey R T . Existence in the large for $ \Box u = F(u) $ in two space dimensions. Math Z, 1981, 178, 233- 261
doi: 10.1007/BF01262042 |
6 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340
doi: 10.1007/BF01162066 |
7 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406
doi: 10.1016/0022-0396(84)90169-4 |
8 |
Schaeffer J . The equation $ u_{tt}-\Delta u = |u|.p $ for the critical value of $ p $. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44
doi: 10.1017/S0308210500026135 |
9 |
Chen W . Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202, 112160
doi: 10.1016/j.na.2020.112160 |
10 |
Chen W , Palmieri A . Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40, 5513- 5540
doi: 10.3934/dcds.2020236 |
11 |
Chen W , Reissig M . Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275, 733- 756
doi: 10.1016/j.jde.2020.11.009 |
12 |
Chen W , Palmieri A . A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. Evol Equa Control Theory, 2020,
doi: 10.3934/eect.2020085 |
13 | Lai N A , Takamura H . Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equa, 2019, 32, 37- 48 |
14 |
Lai N A , Takamura H , Wakasa K . Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263, 5377- 5394
doi: 10.1016/j.jde.2017.06.017 |
15 |
Palmieri A , Takamura A . Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187, 467- 492
doi: 10.1016/j.na.2019.06.016 |
16 | Palmieri A, Takamura H. Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms. 2019, arXiv: 1901.04038 |
17 |
Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition. Comput Math Appl, 2013, 66, 2092- 2095
doi: 10.1016/j.camwa.2013.08.024 |
18 |
Li Y , Liu Y , Lin C . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal-Real, 2010, 11, 3815- 3823
doi: 10.1016/j.nonrwa.2010.02.011 |
19 |
Liu Y , Luo S , Ye Y . Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput Math Appl, 2013, 65, 1194- 1199
doi: 10.1016/j.camwa.2013.02.014 |
20 |
Chen W , Liu Y . Lower bound for the blow-up time for some nonlinear parabolic equations. Bound Value Probl, 2016, 2016, 161
doi: 10.1186/s13661-016-0669-5 |
21 |
Fang Z , Wang Y . Blow-up analysis for a semi-linear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66, 1- 17
doi: 10.1007/s00033-013-0377-2 |
22 |
Tao X , Fang Z . Blow-up phenomena for a nonlinear reaction diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74, 2520- 2528
doi: 10.1016/j.camwa.2017.07.037 |
23 |
Ma L , Fang Z . Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity. Comput Math Appl, 2018, 75, 2735- 2745
doi: 10.1016/j.camwa.2018.01.005 |
24 |
Liu Z , Fang Z . Blow-up phenomena for a nonlocal quasilinear parabolic problem equation with time-dependent coefficients under nonlinear boundary flux. Discrete Contin Dyn Syst Ser, 2016, 21, 3619- 3635
doi: 10.3934/dcdsb.2016113 |
25 |
Ma L , Fang Z . Blow-up phenomena for a semilinear parabolic equation with weighted with inner absorption under nonlinear boundary flux. Math Meth Appl Sci, 2017, 40, 115- 128
doi: 10.1002/mma.3971 |
26 | Zheng Y , Fang Z . Blow-up analysis for a weakly coupled reaction-diffusion system with gradient sources terms and time-dependent coefficients(in Chinese). Acta Mathematica Scientia, 2020, 40A (3): 735- 755 |
27 |
Liu Y , Jiang D , Yamamoto M . Inverse source problem for a double hyperbolic equation describing the three-dimensional time cone model. SIAM J Appl Math, 2015, 75, 2610- 2635
doi: 10.1137/15M1018836 |
28 |
D'Abbicco M , Jannelli E . Dissipative higher order hyperbolic equations. Commum Part Diff Equations, 2017, 42, 1682- 1706
doi: 10.1080/03605302.2017.1390674 |
29 |
Chen W , Reissig M . Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D. Mathematical Methods in the Applied Sciences, 2019, 42, 667- 709
doi: 10.1002/mma.5370 |
[1] | 李倩, 邢艳元. 具有阻尼项的粘弹性波动方程解的高能爆破[J]. 数学物理学报, 2025, 45(3): 748-755. |
[2] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
[3] | 石金诚, 刘炎. 带不同幂次型非线性项的半线性三阶发展方程整体解的存在性与爆破[J]. 数学物理学报, 2024, 44(6): 1550-1562. |
[4] | 高晓茹, 李建军, 徒君. 一类带有时变系数的分数阶扩散方程解的爆破性[J]. 数学物理学报, 2024, 44(5): 1230-1241. |
[5] | 王伟敏, 闫威. 修正Kawahara方程的收敛问题与色散爆破[J]. 数学物理学报, 2024, 44(3): 595-608. |
[6] | 李锋杰, 李平. 伪抛物型 p-Kirchhoff 方程的爆破解[J]. 数学物理学报, 2024, 44(3): 717-736. |
[7] | 简慧, 龚敏, 王莉. 带部分调和势的非齐次非线性 Schrödinger 方程的爆破解[J]. 数学物理学报, 2023, 43(5): 1350-1372. |
[8] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[9] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[10] | 王增桂. 曲率控制细胞和组织生长演化模型的Cauchy问题[J]. 数学物理学报, 2023, 43(3): 771-784. |
[11] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[12] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[13] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[14] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[15] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
|