数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1504-1515.
收稿日期:
2020-04-24
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
王培光
E-mail:pgwang@hbu.edu.cn;15932002803@163.com
作者简介:
杨凯愉, E-mail: 基金资助:
Received:
2020-04-24
Online:
2021-10-26
Published:
2021-10-08
Contact:
Peiguang Wang
E-mail:pgwang@hbu.edu.cn;15932002803@163.com
Supported by:
摘要:
该文应用全局平均法和局部加法平均法,研究了欧氏空间
中图分类号:
王培光,杨凯愉. 具有初边值条件的集值脉冲微分方程的平均法[J]. 数学物理学报, 2021, 41(5): 1504-1515.
Peiguang Wang,Kaiyu Yang. The Averaging Method of Set Impulsive Differential Equations with Initial and Boundary Value Conditions[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1504-1515.
1 |
Bainov D , Domshlak Y , Milusheva S . Partial averaging for impulsive differential equations with supremum. Georgian Mathematical Journal, 1996, 3 (1): 11- 26
doi: 10.1515/GMJ.1996.11 |
2 |
Bainov D , Milusheva S . Application of the averaging method for functional-differential equations with impulses. J Math Anal Appl, 1983, 95, 85- 105
doi: 10.1016/0022-247X(83)90137-3 |
3 | Bainov D , Simeonov P . Impulsive Differential Equations. Singapore: World Scientific, 1995 |
4 | Bainov D , Simeonov P . Systems with Impulsive Effect: Stability, Theory and Applications. New York: Halsted Press, 1998 |
5 | Benchohra M , Boucherif A . An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces. Archivum Mathematicum (Brno), 2000, 36, 159- 169 |
6 | Devi J V . Basic results in impulsive set differential equations. Nonlinear Studies, 2003, 10 (3): 259- 271 |
7 | Devi J V , Vatsala A S . A study of set differential equations with delay. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2004, 11, 287- 300 |
8 |
Federson M , Mesquita J G . Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses. J Differential Equations, 2013, 255, 3098- 3126
doi: 10.1016/j.jde.2013.07.026 |
9 | Kitanov N . Method of averaging for optimal control problems with impulsive effects. Inter J Pure Appl Math, 2011, 72 (4): 573- 589 |
10 |
Klymchuk S , Plotnikov A , Skripnik N . Overview of V.A. Plotnikov's research on averaging of differential inclusions. Physica D, 2012, 241 (22): 1932- 1947
doi: 10.1016/j.physd.2011.05.004 |
11 |
刘健, 张志信, 蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性. 数学物理学报, 2020, 40A (4): 1053- 1060
doi: 10.3969/j.issn.1003-3998.2020.04.020 |
Liu J , Zhang Z X , Jiang W . Global mittag-leffler stability of fractional order nonlinear impulsive differential systems with time delay. Acta Math Sci, 2020, 40A (4): 1053- 1063
doi: 10.3969/j.issn.1003-3998.2020.04.020 |
|
12 | Lakshmikantham V , Bainov D , Simeonov P . Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989 |
13 | Lakshmikantham V , Bhaskar T G , Devi J V . Theory of Set Differential Equations in Metric Spaces. Cambridge: Cambridge Scientific Publisher, 2005 |
14 |
罗艳, 谢文哲. 上下解反向的脉冲微分包含解的存在性. 数学物理学报, 2019, 39A (5): 1055- 1063
doi: 10.3969/j.issn.1003-3998.2019.05.008 |
Luo Y , Xie W Z . Existence of solution for impulsive differential inclusions with upper and lower solutions in the reverse order. Acta Math Sci, 2019, 39A (5): 1055- 1063
doi: 10.3969/j.issn.1003-3998.2019.05.008 |
|
15 | Mil'man V D , Myshkis A D . On the stability of motion in the presence of impulses. Siberian Math J, 1960, 1, 233- 237 |
16 | Plotnikova N . Averaging of impulsive differential inclusions. Mat Stud, 2005, 23 (1): 52- 56 |
17 | Plotnikov V A , Ivanov R P , Kitanov N M . Method of averaging for impulsive differential inclusions. Pliska Stud Math Bulg, 1998, 12, 191- 200 |
18 | Plotnikov V A , Komleva T . Averaging of set integro-differential equations. Applied Mathematics, 2011, 1 (2): 99- 105 |
19 |
Plotnikov V A , Plotnikova L I . Averaging of differential inclusions with many-valued pulses. Ukrainian Mathematical Journal, 1995, 47 (11): 1741- 1749
doi: 10.1007/BF01057922 |
20 | Perestyuk N A , Plotnikov V A , Samoilenko A M , Skripnik N V . Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities. Berlin: De Gruyter, 2011 |
21 | Plotnikov V A , Rashkov P I . Averaging in differential equations with Hukuhara derivative and delay. Functional Differential Equations, 2001, 3 (4): 371- 381 |
22 |
Perestyuk N A , Skripnik N V . Averaging of set-valued impulsive systems. Ukrainian Mathematical Journal, 2013, 65 (1): 140- 157
doi: 10.1007/s11253-013-0770-1 |
23 | Samoilenko A M , Perestyuk N A . Impulsive Differential Equations. Singapore: World Scientific, 1995 |
24 |
Skripnik N V . Averaging of impulsive differential inclusions with Hukuhara derivative. Nonlinear Oscil, 2007, 10 (3): 422- 438
doi: 10.1007/s11072-007-0033-x |
25 | Skrypnyk N V . On the averaging method for differential equations with Hukuhara's derivative. Visn Cherniv Nats Univ, 2008, 374, 109- 115 |
26 | Skripnik N V . The full averaging of fuzzy impulsive differential inclusions. Surv Math Appl, 2010, 5, 247- 263 |
27 | Skripnik N V . The partial averaging of fuzzy impulsive differential inclusions. Different Integr Equat, 2011, 24 (7/8): 743- 758 |
28 |
Skripnik N V . Averaging of impulsive differential inclusions with fuzzy right-hand side when the average is absent. Asian-European Journal of Mathematics, 2015, 8 (4): 1550086
doi: 10.1142/S1793557115500862 |
[1] | 梁青. 两类带 Markov 切换的随机比例泛函微分方程全局解的存在唯一性和稳定性[J]. 数学物理学报, 2025, 45(4): 1184-1205. |
[2] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[3] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[4] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[5] | 徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68. |
[6] | 刘文杰,谢胜利. 脉冲无穷时滞中立型测度微分方程mild解的存在性[J]. 数学物理学报, 2022, 42(6): 1671-1681. |
[7] | 李强,刘立山. 具有周期脉冲的分数阶发展方程周期mild解的存在性[J]. 数学物理学报, 2022, 42(5): 1433-1450. |
[8] | 赵才地,姜慧特,李春秋,TomásCaraballo. 脉冲离散Ginzburg-Landau方程组的统计解及其极限行为[J]. 数学物理学报, 2022, 42(3): 784-806. |
[9] | 杨静,柯昌成,魏周超. 一类连续和不连续分段线性系统的周期解研究[J]. 数学物理学报, 2021, 41(4): 1053-1065. |
[10] | 蒋婷婷,杜增吉. 带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解[J]. 数学物理学报, 2021, 41(1): 178-193. |
[11] | 闫朝琳,高建芳. 混合型脉冲微分方程的数值振动性分析[J]. 数学物理学报, 2020, 40(4): 993-1006. |
[12] | 刘健,张志信,蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性[J]. 数学物理学报, 2020, 40(4): 1053-1060. |
[13] | 姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性[J]. 数学物理学报, 2020, 40(3): 705-716. |
[14] | 罗李平,罗振国,曾云辉. 一类非线性脉冲中立抛物型分布参数系统的振动条件[J]. 数学物理学报, 2020, 40(3): 784-795. |
[15] | 刘玉记. 含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性[J]. 数学物理学报, 2020, 40(1): 103-131. |
|