| 1 | Adams R A , Fournier J F . Sobolev Spaces. New York: Acdamic Press, 2003 |
| 2 | Bae H O . Analicity and asymptotics for the Stokes solutions in a weighted space. J Math Anal Appl, 2002, 269, 147- 171 |
| 3 | Fr?hlich A . The Helmholtz decomposition of weighted $L^{q}$ spaces for Muckenhoupt weights. Annali dell'Universita di Ferrara, 2000, 46, 11- 19 |
| 4 | Fr?hlich A . The Stokes operator in weighted $L^{q}$ spaces I: weighted estimates for the Stokes resolvent problem in a half-space. J Math Fluid Mech, 2003, 5, 166- 199 |
| 5 | Fr?hlich A . Solutions of the Navier-Stoke initial value problem in weighted $L^{q}$-spaces. Math Nachr, 2004, 269, 150- 166 |
| 6 | Galdi G P . An Introduction to the Navier-Stokes Initial-Boundary Value Problem, Fundamental Directions in Mathematical Fluid Mechanics. Basel: Birkh?user, 2000 |
| 7 | Giga Y . Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 62, 186- 212 |
| 8 | Han P . Weighted decay results for the nonstationary Stokes flow and Navier-Stokes equations in half spaces. J Math Fluid Mech, 2015, 17, 599- 626 |
| 9 | Han P . Large time behavior for the nonstationary Navier-Stokes flows in the half-space. Adv Math, 2016, 288, 1- 58 |
| 10 | Han P . On weighted estimates for the Stokes flows, with application to the Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 1155- 1172 |
| 11 | He C , Wang L . Weighted $L^{p}$-estimates for Stokes flow in ${\mathbb R}_{+}^{n}$ with applications to the non-stationary Navier-Stokes flow. Science China Mathematics, 2011, 53 (3): 573- 586 |
| 12 | Iwashita H . $L_{q}$-$L_{r}$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_{q}$ spaces. Math Ann, 1989, 285, 265- 288 |
| 13 | Kato T . Strong $L^{p}$-solutions of the Navier-Stokes equation in ${\mathbb R}^{m}$, with applications to weak solutions. Math Z, 1984, 187, 471- 480 |
| 14 | Kozono H . Global $L^{n}$-solution and its decay property for the Navier-Stokes equations in half-space ${\mathbb R}_{+}^{n}$. J Differential Equations, 1989, 79, 79- 88 |
| 15 | Kobayashi T, Kubo T. Weighted $L^{p}$-$L^{q}$ estimates of Stokes semigroup in half-space and its application to the Navier-Stokes equations//Amann H, et al. Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics. Basel: Birkh?user, 2006: 337-349 |
| 16 | Meyries M. Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors[D]. Karlsruhe: Karlsruhe Institute of Technology, 2010 |
| 17 | Prüss J , Simonett G . Maximal regularity for evolution equations in weighted $L_p$-spaces. Arch Math, 2004, 82, 415- 431 |
| 18 | Stein E M , Weiss G . Fractional integral on $n$ dimensional Euclidean space. J Math Mech, 1958, 7, 503- 514 |
| 19 | Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1971 |
| 20 | Ukai S . A solution formula for the Stokes equation in ${\mathbb R}_{+}^{n}$. Communications on Pure and Applied Mathematics, 1987, 40, 611- 621 |
| 21 | 张书陶. 加权Hardy-Sobolev不等式及其应用. 数学物理学报, 2013, 33A (4): 621- 626 |
| 21 | Zhang S . Weighted Hardy-Sobolev inequality and its application. Acta Math Sci, 2013, 33A (4): 621- 626 |