| 1 | 马知恩, 周义仓, 王稳地, 靳帧. 传染病动力学的数学模型与研究. 北京: 科学出版社, 2004 | | 1 | Ma Z E , Zhou Y C , Wang W D , Jin Z . Mathematical Modeling and Research on the Dynamics of Infectious Diseases. Beijing: Science Press, 2004 | | 2 | 王亮, 孙建兰. 麻疹流行病学研究现状. 上海医药, 2011, 32A (8): 394- 396 | | 2 | Wang L , Sun J L . Status of epidemiology of measles. Shanghai Medical and Pharmaceutical Journal, 2011, 32A (8): 394- 396 | | 3 | 姜翠翠, 宋丽娟, 王开发. 考虑部分免疫和潜伏期的麻疹传染病模型的稳定性分析. 生物数学学报, 2017, 32A (1): 57- 64 | | 3 | Jiang C C , Song L J , Wang K F . Stability analysis of a measles epidemic model with partial immunity and latency. J Biomath, 2017, 32A (1): 57- 64 | | 4 | 佘连兵. 一类具有接种的麻疹模型的动力学分析. 西南师范大学学报, 2015, 40A (7): 12- 16 | | 4 | She L B . On dynamical analysis of a measles model with vaccination. J Southwest Norm Univ, 2015, 40A (7): 12- 16 | | 5 | 靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (4): 909- 917 | | 5 | Jing X J , Zhao A M , Liu A M . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917 | | 6 | Huang J C , Ruan S G , Wu X , Zhou X L . Seasonal transmission dynamics of measles in China. Theor Biosci, 2018, 137 (2): 185- 195 | | 7 | Zhou L H , Wang Y , Xiao Y Y , Li M Y . Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Math Biosci, 2018, 308, 27- 37 | | 8 | Hale J K. Functional Differential Equations. Berlin: Springer, 1971 | | 9 | Webb G F. Theory of Nonlinear Age-dependent Population Dynamics. New York: Marcel Dekker, 1985 | | 10 | Hale J K , Waltman P . Persistence in infinite-dimensinal systems. Math, 1989, 20 (2): 388- 396 | | 11 | Adams R A , Fournier J J . Sobolev Spaces. New York: Academic Press, 2003 | | 12 | Smith H M, Thieme H R. Dynamical Systems and Population Persistence. Providence, RI: Ameri Math Soc, 2011 | | 13 | Diekmann O , Heesterbeek J A , Metz J A . On the definition and the couputation of the basic reproduction ratioin models for infectious diseases in heterogeneous populations. J Math Biol, 1990, 28 (4): 365- 382 | | 14 | Li Y Y , Nguyen L , Wang B . Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc Var Partial Diff, 2018, 57 (4): 1- 29 | | 15 | Zhao X. Dynamical Systems in Population Biology. New York: Springer-Verlag, 2003 | | 16 | Sigdel R P , McCluskey C . Global stability for an SEI model of infectious disease with immigration. Appl Math Comput, 2014, 243 (2): 684- 689 | | 17 | LaSalle G P. The Stability of Dynamical Systems. Phladelphia: SIAM, 1976 | | 18 | 马超, 郝利新, 马静. 中国2010年麻疹流行病学特征与消除麻疹进展. 中国疫苗和免疫, 2011, 17A (3): 242- 248 | | 18 | Ma C , Hao L X , Ma J . Measles epidemiological characteristics and progress of measles elimination in China, 2010. Chinese Journal of Vaccines and Immunization, 2011, 17A (3): 242- 248 | | 19 | Duan X C , Yuan S L , Qiu Z P , Ma J L . Global stability of an epidemic model with ages of vaccination and latency. Comput Math Appl, 2014, 68, 288- 308 | | 20 | Li Y K , Teng Z D , Hu C , Ge Q . Global stability of an epidemic model with age-dependent vaccination, latent and relapse. Chaos Solit Fract, 2017, 105, 195- 207 | | 21 | 陈庚. 一类具有年龄结构的传染病模型的持续性质. 高校应用数学学报, 2007, 22A (3): 253- 262 | | 21 | Chen G . Disease persistence for a kind of age-structured epidemic models. Appl Math Ser A, 2007, 22A (3): 253- 262 |
|