| 1 | Rudin L , Osher S , Fatemi E . Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60: 259- 268 | | 2 | Gilboa G . Nonlinear Eigenproblems in Image Processing and Computer Vision. Cham: Springer International Publishing, 2018 | | 3 | Caselles V , Chambolle A , Novaga M . The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model Simul, 2007, 6 (3): 879- 894 | | 4 | Almansa A , Ballester C , Caselles V , Haro G . A TV based restoration model with local constraints. J Sci Comput, 2008, 34: 209- 236 | | 5 | Strong D , Chan T F . Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems, 2003, 19: 165- 187 | | 6 | Andreu F , Caselles V , Díaz J I , Mazón J M . Some qualitative properties for the total variation flow. Journal of Functional Analysis, 2002, 188: 516- 547 | | 7 | Andreu F , Mazón J M , Moll J S . The total variation flow with nonlinear boundary conditions. Asymptotic Analysis, 2005, 43: 9- 46 | | 8 | Evans L , Gariepy R F . Measure Theory and Fine Properties of Functions. Boca Raton, Fla: CRC Press, 1991 | | 9 | Andreu F , Ballester C , Caselles V , Mazón J M . The Dirichlet problem for the total variation flow. Journal of Functional Analysis, 2001, 180 (2): 347- 403 | | 10 | Liu Q , Gao T , Xia L . Existence and uniqueness of weak solutions for some singular evolutionary system in image denoising. Math Methods Appl Sci, 2014, 37 (11): 1602- 1609 | | 11 | Guo Z , Yin J X , Liu Q . On a reaction-diffusion system applied to image decomposition and restoration. Math Comput Modelling, 2011, 53 (5/6): 1336- 1350 | | 12 | de León S S , Webler C M . Global existence and uniqueness for the inhomogeneous 1-Laplace evolution equation. Nodea-Nonlinear Differential Equations and Applications, 2015, 22 (5): 1213- 1246 | | 13 | Anzellotti G . Pairings between measures and bounded functions and compensated compactness. Ann Mat Pura Appl, 1983, 4: 293- 318 |
|