| 1 | Hestenes M R , Stiefel E . Method of conjugate gradient for solving linear equations. Journal of Research of National Bureau of Standards, 1952, 49: 409- 436 |
| 2 | Fletcher R , Reeves C . Function minimization by conjugate gradients. Computer Journal, 1964, 7 (2): 149- 154 |
| 3 | Polak E , Ribiére G . Note surla convergence de directions conjugées. Revue Francaise Informat Recherche Operationelle 3e Anneé, 1969, 16 (3): 35- 43 |
| 4 | Polyak B T . The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics, 1969, 9: 94- 112 |
| 5 | Dai Y H , Yuan Y X . A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 1999, 10 (1): 177- 182 |
| 6 | Fletcher R. Unconstrained Optimization. Practical Methods of Optimization: Vol 1. New York: Wiley, 1987 |
| 7 | Liu Y , Storey C . Efficient generalized conjugate gradient algorithms, part 1:theory. Journal of Optimization Theory and Applications, 1991, 69 (1): 129- 137 |
| 8 | Gilbert J C , Nocedal J . Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 1992, 2 (1): 21- 42 |
| 9 | Powell M J D. Nonconvex Minimization Calculations and the Conjugate Gradient Method//Griffiths D F, et al. Numerical Analysis. Berlin: Springer, 1984: 122-141 |
| 10 | Powell M J D . Convergence properties of algorithms for nonlinear optimization. SIAM Review, 1986, 28 (4): 487- 500 |
| 11 | Jiang X Z , Jian J B , Song D , et al. An improved Polak-Ribiére-Polyak conjugate gradient method with an efficient restart direction. Computational and Applied Mathematics, 2021, 40 (5): 1- 24 |
| 12 | Mtagulwa P , Kaelo P . An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems. Applied Numerical Mathematics, 2019, 145: 111- 120 |
| 13 | Aminifard Z , Babaie-Kafaki S . A modified descent Polak-Ribi?e-Polyak conjugate gradient method with global convergence property for nonconvex functions. Calcolo, 2019, 56 (2): 1- 11 |
| 14 | Liu J K , Feng Y M , Zou L M . A spectral conjugate gradient method for solving large-scale unconstrained optimization. Computers Mathematics with Applications, 2019, 77 (3): 731- 739 |
| 15 | Dong X L . A modified nonlinear Polak-Ribiére-Polyak conjugate gradient method with sufficient descent property. Calcolo, 2020, 57 (3): 1- 14 |
| 16 | Dai Z F , Tian B S . Global convergence of some modified PRP nonlinear conjugate gradient methods. Optimization Letters, 2011, 5 (4): 615- 630 |
| 17 | Li M . A three term Polak-Ribiére-Polyak conjugate gradient method close to the memoryless bfgs quasi-newton method. Journal of Industrial Management Optimization, 2020, 16 (1): 245- 260 |
| 18 | Li X L , Shi J J , Dong X L , et al. A new conjugate gradient method based on Quasi-Newton equation for unconstrained optimization. Journal of Computational and Applied Mathematics, 2019, 350: 372- 379 |
| 19 | Dai Y H , Yuan Y X . A class of globally convergent conjugate gradient methods. Science in China Series A: Mathematics, 2003, 46 (2): 251- 261 |
| 20 | Barzilai J , Borwein J M . Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8 (1): 141- 148 |
| 21 | Luengo F, Raydan M, Glunt W, et al. Preconditioned spectral gradient method for unconstrained optimization problems[R]. Technical Report 96-08, Escuela de Computación, Facultad de Ciencias, Universidad Central de Venezuela, 47002 Caracas 1041-A, Venezuela, 1996 |
| 22 | Birgin E G , Martínez J M . A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, 2001, 43 (2): 117- 128 |
| 23 | Kou C X , Dai Y H . A modified self-scaling memoryless Broyden-Fletcher-Goldfard-Shanno method for unconstrained optimization. Journal of Optimization Theory and Applications, 2015, 165 (1): 209- 224 |
| 24 | Dai Y H , Kou C X . A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM Journal on Optimization, 2013, 23 (1): 296- 320 |
| 25 | Hager W W , Zhang H . A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 2005, 16 (1): 170- 192 |
| 26 | Gould N I M , Orban D , Toint P L . CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Transactions on Mathematical Software (TOMS), 2003, 29 (4): 373- 394 |
| 27 | Moré J J , Garbow B S , Hillstrom K E . Testing unconstrained optimization software. ACM Transactions on Mathematical Software, 1981, 7 (1): 17- 41 |
| 28 | Andrei N . An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 2008, 10 (1): 147- 161 |
| 29 | Dolan E D , Moré J J . Benchmarking optimization software with performance profiles. Mathematical Programming, 2002, 91 (2): 201- 213 |