| 1 | Antonelli P , Marcati P . On the finite energy weak solutions to a system in quantum fluid dynamics. Comm Math Phys, 2009, 287: 657- 686 |
| 2 | Antonelli P , Marcati P . The quantum hydrodynamics system in two space dimensions. Arch Ration Mech Anal, 2012, 203: 499- 527 |
| 3 | Antonelli P , Marcati P , Zheng H . Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability. Comm Math Phys, 2021, |
| 4 | Antonelli P , Spirito S . Global existence of finite energy weak solutions of quantum Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225: 1161- 1199 |
| 5 | Antonelli P , Spirito S . On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations. J Hyperbolic Differ Equa, 2018, 15: 133- 147 |
| 6 | Antonelli P , Spirito S . On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids. Nonlinear Anal, 2019, 187: 110- 124 |
| 7 | Bian D F , Yao L , Zhu C J . Vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier-Stokes equations. SIAM J Math Anal, 2014, 46: 1633- 1650 |
| 8 | Bresch D , Desjardins B , Lin C K . On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843- 868 |
| 9 | Bresch D , Desjardins B . On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J Math Pures Appl, 2007, 87: 57- 90 |
| 10 | Bresch D , Jabin P E . Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals Math, 2018, 188: 577- 684 |
| 11 | Brull S , Méhats F . Derivation of viscous correction terms for the isothermal quantum Euler model. ZAMM Z Angew Math Mech, 2010, 90: 219- 230 |
| 12 | Ducomet B , Ne?asová ? , Vasseur A . On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities. Z Angew Math Phys, 2010, 61: 479- 491 |
| 13 | Ducomet B , Ne?asová ? , Vasseur A . On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas. J Math Fluid Mech, 2011, 13: 191- 211 |
| 14 | Donatelli D , Feireisl E , Marcati P . Well/ill posedness for the Euler-Korteweg-Poisson system and related problems. Comm Partial Differential Equations, 2015, 40: 1314- 1335 |
| 15 | Feireisl E . Compressible Navier-Stokes equations with a non-monotone pressure law. J Differential Equations, 2002, 184: 97- 108 |
| 16 | Feireisl E . On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law. Comm Partial Differential Equations, 2019, 44: 271- 278 |
| 17 | Gisclon M , Lacroix-Violet I . About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2015, 128: 106- 121 |
| 18 | Germain P , LeFloch P . Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model. Comm Pure Appl Math, 2016, 69: 3- 61 |
| 19 | Guo Z H , Jiu Q S , Xin Z P . Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39: 1402- 1427 |
| 20 | Haspot B . Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2. Math Ann, 2017, 367: 667- 700 |
| 21 | Jüngel A . Effective velocity in compressible Navier-Stokes equations with third-order derivatives. Nonlinear Anal, 2011, 74: 2813- 2818 |
| 22 | Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42: 1025- 1045 |
| 23 | Jüngel A , Li H L . Quantum Euler-Poisson systems: global existence and exponential decay. Quart Appl Math, 2004, 62: 569- 600 |
| 24 | Jüngel A, Milisic J P. Quantum Navier-Stokes equations//Günther M, Bartel A, Brunk M, et al. Progress in Industrial Mathematics at ECMI 2010. Berlin: Springer, 2012: 427-439 |
| 25 | Kotschote M . Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal Non Linéaire, 2008, 25: 679- 696 |
| 26 | Li H L , Li J , Xin Z P . Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281: 401- 444 |
| 27 | Li H L , Marcati P . Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm Math Phys, 2004, 245: 215- 247 |
| 28 | Li J, Xin Z P. Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. 2015, arXiv: 1504.06826 |
| 29 | Liu T P , Xin Z P , Yang T . Vacuum states for compressible flow. Discrete Contin Dynam Systems, 1998, 4: 1- 32 |
| 30 | Ladyzhenskaya O, Solonnikov V A, Uraltseva N N. Linear and quasilinear equations of parabolic type. Translated from the Russian by Smith S. Translations of Mathematical Monographs, Vol 23. Providence, RI: American Mathematical Society, 1968 |
| 31 | Mellet A , Vasseur A . On the barotropic compressible Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32: 431- 452 |
| 32 | Tan Z , Zhang X , Wang H Q . Asymptotic behavior of Navier-Stokes-Korteweg with friction in R3. Discrete Contin Dyn Syst, 2014, 34: 2243- 2259 |
| 33 | Tang T , Zhang Z J . A remark on the global existence of weak solutions to the compressible quantum Navier-Stokes equations. Nonlinear Anal Real World Appl, 2019, 45: 255- 261 |
| 34 | Vasseur A , Yu C . Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206: 935- 974 |
| 35 | Vasseur A , Yu C . Global weak solutions to the compressible quantum Navier-Stokes equations with damping. SIAM J Math Anal, 2016, 48: 1489- 1511 |
| 36 | Wang W J , Yao L . Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Commun Pure Appl Anal, 2014, 13: 2331- 2350 |
| 37 | Zhang X , Tan Z . Decay estimates of the non-isentropic compressible fluid models of Korteweg type in R3. Commun Math Sci, 2014, 12: 1437- 1456 |