| 1 | Anco S C , Silva P L D , Freire I L . A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations. J Math Phys, 2015, 56 (9): 091506 | | 2 | Camassa R , Holm D . An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661- 1664 | | 3 | Chen M T , Su W H . Local well-posedness for the Cauchy problem of 2D nonhomogeneous incompressible and non-resistive MHD equation with vacuum. Acta Mathmatica Scientia, 2021, 41A (1): 100- 125 | | 4 | Coclite G M , Holden H , Karlsen K H . Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J Math Anal, 2005, 37: 1044- 1069 | | 5 | Coclite G M , Holden H , Karlsen K H . Well-posedness for a parabolic-elliptic systerm. Disc Cont Dyn Syst, 2005, 13: 659- 682 | | 6 | Constantin A , Ivanov R I . Dressing method for Degasperis-Procesi equation. Stud Appl Math, 2017, 138: 205- 226 | | 7 | Constantin A , Lannes D . The hydro-dynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192: 165- 186 | | 8 | Constantin A , Strauss W . Stability of peakons. Commun Pure Appl Math, 2000, 53: 603- 610 | | 9 | Degasperis A , Procesi M . Asymptotic integrability. Symmetry and Perturbation Theory, 1999, 1 (1): 23- 37 | | 10 | Fu Y , Qu C Z . Well-posedness and wave breaking of the degenerate Novikov equation. J Differential Equations, 2017, 263: 4634- 4657 | | 11 | Grayshan K . Peakon solutions of the Novikov equation and properties of the data-to-solution map. J Math Anal Appl, 2013, 397: 515- 521 | | 12 | Grayshan K , Himonas A A . Equations with peakon traveling wave solutions. Adv Dyn Syst Appl, 2013, 8: 217- 232 | | 13 | Guo Z G . On an integrable Camassa-Holm type equation with cubic nonlinearity. Nonlinear Anal, 2017, 38: 225- 232 | | 14 | Guo Z G , Li K Q , Xu C B . On a generalized Camassa-Holm type equation with $(k + 1)$-degree nonlinearities. Z Angew Math Mech, 2018, 98: 1567- 1573 | | 15 | Guo Z G , Li X G , Yu C . Some properties of solutions to the Camassa-Holm-type equation with higher-order nonlinearities. Journal of Nonlinear Science, 2018, 28 (5): 1901- 1914 | | 16 | Himonas A A , Holliman C . The Cauchy problem for a generalized Camassa-Holm equation. Adv Differ Equ, 2014, 19: 161- 200 | | 17 | Himonas A A , Misiolek G , Ponce G , Zhou Y . Persistence properties and unique continuation of solutions of Camassa-Holm equation. Commun Math Phys, 2007, 271: 511- 522 | | 18 | Himonas A A , Thompson R . Persistence properties and unique continuation for a generalized Camassa-Holm equation. J Math Phys, 2014, 55: 091503 | | 19 | Ma C C , Cao Y Q , Guo Z G . Large time behavior of momentum support for a Novikov type equation. Mathematical Physics Analysis and Geometry, 2019, 22 (4): 1- 12 | | 20 | Ma X , Yin H , Jing J . Global asymptotics toward the rerefaction wave for a paraboltc-elliptic system related to the Camassa-holm shallow water equation. Acta Mathematica Scientia, 2009, 29B (2): 371- 390 | | 21 | Mi Y S , Liu Y , Guo B L , Luo T . The Cauthy problem for a generalized Camassa-Holm equation. J Differential Equations, 2019, 266: 6733- 6770 | | 22 | Mi Y S , Mu C L . On the Cauthy problem for the modified Novikov equation with peakon solutions. J Differential Equations, 2013, 254: 961- 982 | | 23 | Novikov V S . Generalizations of the Camassa-Holm equation. J Phys A, 2009, 42: 342002 | | 24 | Simon J . Compact sets in the space $L_{p}((0, T), B)$. Ann Mat Pura Appl, 1987, 146: 65- 96 | | 25 | Tu X Y , Mu C L , Qiu S Y . Continuous dependence on data under the lipschitz metric for the Rotation-Camassa-Holm equation. Acta Mathematica Scientia, 2021, 41B (1): 1- 18 | | 26 | Wei L , Qiao Z , Wang Y , Zhou S . Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete Contin Dyn Syst, 2017, 37: 1733- 1748 | | 27 | Hao X H , Cheng Z L . The integrability of the KdV-shallow water waves equation. Acta Mathmatica Scientia, 2019, 39A (3): 451- 460 | | 28 | Xin Z P , Zhang P . On the weak solutions to a shallow water equation. Comm Pure Appl Math, 2000, 53: 1411- 1433 | | 29 | Zhou S M , Mu C L , Wang L Z . Self-similar solutions and blow-up phenomena for a two-component shallow water system. Acta Mathematica Scientia, 2013, 33B (3): 821- 829 |
|