| 1 | Ahmed N U . Existence of optimal controls for a general class of impulsive systems on Banach spaces. SIAM J Control Optim, 2003, 42, 669- 685 | | 2 | Bainov D D , Simeonov P S . Impulsive Differential Equations: Periodic solutions and applications. New York: John Wiley, 1993 | | 3 | Beyn W J , Pilyugin S Yu . Attractors of reaction diffusion systems on infinite lattices. J Dyn Differential Equations, 2003, 15, 485- 515 | | 4 | Bonotto E M , Bortolan M C , Caraballo T . Attractors for impulsive non-autonomous dynamical systems and their relations. J Differential Equations, 2017, 262, 3524- 3550 | | 5 | Bonotto E M , Demuner D P , Jimenez M Z . Convergence for non-autonomous semidynamical systems with impulses. J Differential Equations, 2019, 266, 227- 256 | | 6 | Bouchard B , Dang N M , Lehalle C A . Optimal control of trading algorithms: A general impulse control approach. SIAM J Financial Math, 2011, 2, 404- 438 | | 7 | Bronzi A , Mondaini C , Rosa R . Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46, 1893- 1921 | | 8 | Bronzi A , Rosa R . On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete Cont Dyn Syst, 2014, 34, 19- 49 | | 9 | Bronzi A , Mondaini C , Rosa R . Abstract framework for the theory of statistical solutions. J Differential Equations, 2016, 260, 8428- 8484 | | 10 | Caraballo T , Morillas F , Valero J . Attractors of stochastic lattice dynamical systems with a multipliative noise and non-Lipschitz nonlinearities. J Differential Equations, 2012, 253, 667- 693 | | 11 | Caraballo T , Kloeden P , Real J . Invariant measures and statistical solutions of the globally modified Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 10, 761- 781 | | 12 | Chekroun M , Glatt-Holtz N . Invariant measures for dissipative dynamical systems: abstract results and applications. Comm Math Phys, 2012, 316, 723- 761 | | 13 | Chow S N , Paret J M . Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans Circuits Syst, 1995, 42, 752- 756 | | 14 | Chow S N. Lattice Dynamical Systems//Macki J W, Zecca P. Dynamical Systems. Berlin: Springer-Verlag, 2003: 1-102 | | 15 | Ciesielski K . On semicontinuity in impulsive dynamical systems. Bull Pol Acad Sci Math, 2004, 52, 71- 80 | | 16 | Ciesielski K . On stability in impulsive dynamical systems. Bull Pol Acad Sci Math, 2004, 52, 81- 91 | | 17 | Ciesielski K . On time reparametrizations and isomorphisms of impulsive dynamical systems. Ann Polon Math, 2004, 84, 1- 25 | | 18 | Davis M H , Guo X , Wu G . Impulse control of multidimensional jump diffusions. SIAM J Control Optim, 2010, 48, 5276- 5293 | | 19 | Foias C , Prodi G . Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pura Appl, 1976, 111, 307- 330 | | 20 | Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 | | 21 | Foias C , Rosa R , Temam R . Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations. J Dyn Differential Equations, 2019, 31, 1689- 1741 | | 22 | Han X , Kloeden P . Non-autonomous lattice systems with switching effects and delayed recovery. J Differential Equations, 2016, 261, 2986- 3009 | | 23 | Iovane G , Kapustyan A V . Global attractor for impulsive reaction-diffusion equation. Nonlinear Oscil, 2005, 8, 318- 328 | | 24 | Iovane G , Kapustyan A V , Valero J . Asymptotic behavior of reaction-diffusion equations with non-damped impulsive effects. Nonlinear Anal, 2008, 68, 2516- 2530 | | 25 | Jiang H , Zhao C . Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equations, 2021, 26 (3/4): 107- 132 | | 26 | Karachalios N I , Yannacopoulos A N . gloabl existence and compact attractors for the discrete nonlinear Schr?dinger equation. J Differential Equations, 2005, 217, 88- 123 | | 27 | Keener J P . Propagation and its failure in coupled systems of discret excitable cells. SIAM J Appl Math, 1987, 47, 556- 572 | | 28 | Kloeden P , Marín-Rubio P , Real J . Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Comm Pure Appl Anal, 2009, 8, 785- 802 | | 29 | Li H , Bates P W , Lu S . Dynamics of the 3D fractional complex Ginzburg-Landau equation. J Differential Equations, 2015, 259, 5276- 5301 | | 30 | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, 40A (2): 328- 339 | | 30 | Li Y J , Sang Y M , Zhao C D . Invariant measures and Liouville type equation for first-order lattice system. Acta Mathematica Scientia, 2020, 40A (2): 328- 339 | | 31 | ?ukaszewicz G . Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 9, 643- 659 | | 32 | ?ukaszewicz G , Robinson J C . Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34, 4211- 4222 | | 33 | Rosa R. Theory and applications of statistical solutions of the Navier-Stokes equations//Robinson J C, Rodrigo J L. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2009: 228-257 | | 34 | Schmalfuss B . Attractors for non-autonomous and random dynamical systems perturbed by impulses. Discrete Cont Dyn Syst, 2003, 9, 727- 744 | | 35 | Vishik M , Fursikov A . Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19, 710- 729 | | 36 | Wang B . Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221, 224- 245 | | 37 | Wang C , Xue G , Zhao C . Invariant Borel probability measures for discrete long-wave-short-wave resonance equations. Appl Math Comp, 2018, 339, 853- 865 | | 38 | Wang J , Zhao C , Caraballo T . Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays. Comm Nonl Sci Numer Simu, 2020, 91, 105459 | | 39 | Xu J H , Caraballo T . Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete Cont Dyn Syst-B, 2019, 24, 2719- 2743 | | 40 | Xu J H , Zhang Z , Caraballo T . Well-posedness and dynamics of impulsive fractional stochastic evolution equations with unbounded delay. Comm Nonlin Sci Numer Simu, 2019, 75, 121- 139 | | 41 | Yan X , Wu Y , Zhong C . Uniform attractors for impulsive reaction-diffusion equations. Appl Math Comp, 2010, 216, 2534- 2543 | | 42 | Zhao C , Yang L . Pullback attractor and invariant measures for three dimensional globally modified Navier-Stokes equations. Comm Math Sci, 2017, 15, 1565- 1580 | | 43 | Zhao C , Xue G , ?ukaszewicz G . Pullabck attractor and invariant measures for the discrete Klein-Gordon-Schr?dinger equatios. Discrete Cont Dyn Syst-B, 2018, 23, 4021- 4044 | | 44 | Zhao C , Caraballo T . Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differential Equations, 2019, 266, 7205- 7229 | | 45 | Zhao C , Li Y , Caraballo T . Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differential Equations, 2020, 269, 467- 494 | | 46 | Zhao C , Li Y , ?ukaszewicz G . Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71, 1- 24 | | 47 | Zhao C , Song Z , Caraballo T . Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations. Appl Math Lett, 2020, 99, 105981 | | 48 | Zhao C , Li Y , Song Z . Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal RWA, 2020, 53, 103077 | | 49 | Zhao C , Li Y , Sang Y . Using trajectory attractor to construct trajectory statistical solutions for 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100, e201800197 | | 50 | Zhao C , Caraballo T , ?ukaszewicz G . Statistical solution and Liouville type theorem for the Klein-Gordon-Schr?dinger equations. J Differential Equations, 2021, 281, 1- 32 | | 51 | Zhao C , Jiang H , Caraballo T . Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices. Appl Math Comp, 2021, 404, 126103 | | 52 | Zhou S . Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differential Equations, 2017, 263, 2247- 2279 | | 53 | Zhu Z , Sang Y , Zhao C . Pullback attractor and invariant measures for the discrete Zakharov equations. J Appl Anal Comp, 2019, 9, 2333- 2357 |
|