| 1 | Saint-Venant De . Théorie du mouvement non-permanent des eaux avec application aux crues des rivires et à lintroduction des marées dans leur lit. Comptes Rendus Hebdomadaires Des Séances De Lacadémie Des Sciences, 1871, 73 (99): 148- 154 | | 2 | Nessyahu H , Tadmor E . Non-oscillatory central differencing for hyperbolic conservation laws. J Comput Phys, 1990, 87 (2): 408- 463 | | 3 | Touma R . Central unstaggered finite volume schemes for hyperbolic systems: applications to unsteady shallow water equations. Appl Math Comput, 2009, 213 (1): 47- 59 | | 4 | Touma R . Well-balanced central schemes for systems of shallow water equations with wet and dry states. Appl Math Model, 2016, 40 (4): 2929- 2945 | | 5 | Dong J , Li D F . An effect non-staggered central scheme based on new hydrostatic reconstruction. Appl Math Comput, 2019, 372 | | 6 | Cheng Y Z , Kurganov A . Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun Math Sci, 2016, 14 (6): 1643- 1663 | | 7 | Cheng Y Z , Chertock A , Herty M , et al. A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J Sci Comput, 2019, 80 (1): 538- 554 | | 8 | Liu X , Chen X , Jin S , et al. Moving-water equilibria preserving partial relaxation scheme for the Saint-Venant system. SIAM J Sci Comput, 2020, 42 (4): A2206- A2229 | | 9 | Noelle S , Xing Y L , Shu C W . High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J Comput Phys, 2007, 226 (1): 29- 58 | | 10 | Xing Y L , Shu C W , Noelle S . On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J Sci Comput, 2011, 48 (1): 339- 349 | | 11 | Xing Y L . Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J Comput Phys, 2014, 257, 536- 553 | | 12 | Kurganov A , Petrova G . A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun Math Sci, 2007, 5 (1): 133- 160 | | 13 | Chen G X , Noelle S . A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J Numer Anal, 2017, 55 (2): 758- 784 | | 14 | Jiang G S , Levy D , Lin C T , et al. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J Numer Anal, 1998, 35 (6): 2147- 2168 | | 15 | Touma R . Unstaggered central schemes with constrained transport treatment for ideal and shallow water magnetohydrodynamics. Appl Numer Math, 2010, 60 (7): 752- 766 | | 16 | Touma R , Khankan S . Well-balanced unstaggered central schemes for one and two-dimensional shallow water equation systems. Appl Math Comput, 2012, 218 (10): 5948- 5960 | | 17 | Bollermann A , Chen G X , Kurganov A , et al. A well-balanced reconstruction for wet/dry fronts for the shallow water equations. J Sci Comput, 2013, 56 (2): 267- 290 |
|