| 1 | Alouges F , Soyeur A . On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal, 1992, 18 (11): 1071- 1084 |
| 2 | Antonelli P , Spirito S . Global existence of finite energy weak solutions of quantum Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225 (3): 1161- 1199 |
| 3 | Antonelli P , Spirito S . On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations. Journal of Hyperbolic Differential Equations, 2018, 15 (1): 133- 147 |
| 4 | Bene?ová B , Forster J , Liu C , et al. Schl?merkemper A. Existence of weak solutions to an evolutionary model for magnetoelasticity. SIAM J Math Anal, 2018, 50 (1): 1200- 1236 |
| 5 | Chen Y M , Ding S J , Guo B L . Partial regularity for two-dimensional Landau-Lifshitz equations. Acta Math Sinica (NS), 1998, 14 (3): 423- 432 |
| 6 | Ding S J , Wang C Y . Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not IMRN, 2007, 25 (4): Art ID rnm012 |
| 7 | Feireisl E . Dynamics of Viscous Compressible Fluids. Volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford: Oxford University Press, 2004 |
| 8 | Feireisl E , Novotny A , Petzeltová H . On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3 (4): 358- 392 |
| 9 | Gamba I M , Gualdani M P , Zhang P . On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math, 2009, 157 (1): 37- 54 |
| 10 | Gamba I M , Jüngel A . Positive solutions to singular second and third order differential equations for quantum fluids. Arch Ration Mech Anal, 2001, 156 (3): 183- 203 |
| 11 | Gamba I M , Jüngel A . Asymptotic limits for quantum trajectory models. Comm Partial Differential Equations, 2002, 27 (3/4): 669- 691 |
| 12 | Gisclon M , Lacroix-Violet I . About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2015, 128: 106- 121 |
| 13 | Gualdini M P , Jüngel A . Analysis of the viscous quantum hydrodynamic equations for semiconductors. European J Appl Math, 2004, 15 (5): 577- 595 |
| 14 | Guo B L , Hong M C . The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc Var Partial Differential Equations, 1993, 1 (3): 311- 334 |
| 15 | Guo B L, Ding S J. Landau-Lifshitz Equations, Volume 1 of Frontiers of Research with the Chinese Academy of Sciences. Hackensack, NJ: World Scientific Publishing Co Pte Ltd, 2008 |
| 16 | Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42 (3): 1025- 1045 |
| 17 | Jüngel A , Mili?i? J P . Physical and numerical viscosity for quantum hydrodynamics. Commun Math Sci, 2007, 5 (2): 447- 471 |
| 18 | Kalousek M , Kortum J , Schl?merkemper A . Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete Contin Dyn Syst Ser S, 2021, 14 (1): 17- 39 |
| 19 | Lions P L . Mathematical Topics in Fluid Mechanics. New York: Oxford University Press, 1998 |
| 20 | Vasseur A F , Cheng Yu . Global weak solutions to the compressible quantum Navier-Stokes equations with damping. SIAM J Math Anal, 2016, 48 (2): 1489- 1511 |
| 21 | Wang G W , Guo B L . A Blow-up criterion of strong solutions to the quantum hydrodynamic Model. Acta Math Sci, 2020, 40B (3): 795- 804 |
| 22 | Wang G W , Guo B L . Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbf{R}^d$. J Differential Equations, 2016, 261 (7): 3815- 3842 |
| 23 | Wang G W , Guo B L . Blow-up of solutions to quantum hydrodynamic models in half space. J Math Phys, 2017, 58 (3): 031505 |
| 24 | Wang C Y . On Landau-Lifshitz equation in dimensions at most four. Indiana Univ Math J, 2006, 55 (5): 1615- 1644 |
| 25 | Wang G W , Guo B L . Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete Contin Dyn Syst Ser B, 2019, 24 (11): 6141- 6166 |
| 26 | Wang G W , Guo B L . A new blow-up criterion of the strong solution to the quantum hydrodynamic model. Appl Math Lett, 2021, 119: 107045, 7 |
| 27 | Wang G W , Guo B L , Fang S M . Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math Methods Appl Sci, 2017, 40 (14): 5262- 5272 |
| 28 | Xin Z P . Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51 (3): 229- 240 |
| 29 | Zhou Y L , Guo B L , Tan S B . Existence and uniqueness of smooth solution for system of ferromagnetic chain. Science in China, Ser A, 1991, 34 (3): 257- 266 |