| 1 | von Kármán T . Festigkeitsprobleme im maschinenbau. Encycl der Mathematischen Wissenschaften, Leipzig, 1910, 4: 348- 352 | | 2 | Berger M H . A new approach to the analysis of large deflections of plates. J Appl Mech, 1955, 22: 465- 472 | | 3 | Berger M S . On von Kármán's equations and the buckling of a thin elastic plate, I: The clamped plate. Comm Pure Appl Math, 1967, 20: 687- 719 | | 4 | Ciarlet P G . A justification of the von Kármán equations. Arch Rat Mech Anal, 1980, 73: 349- 389 | | 5 | Ferrero A , Gazzola F . A partially hinged rectangular plate as a model for suspension bridges. Disc Cont Dynam Syst A, 2015, 35: 5879- 5908 | | 6 | Gazzola F , Wang Y . Modeling suspension bridges through the von Kármán quasilinear plate equations. Progress in Nonlinear Differential Equations and Their Applications, 2015, 86: 269- 297 | | 7 | Wang Y . An evolution von Kármán equation modeling suspension bridges. Nonlin Anal, 2018, 169: 59- 78 | | 8 | Rocard Y. Dynamic Instability: Automobiles, Aircraft, Suspension Bridges. London: Crosby Lockwood, 1957 | | 9 | Al-Gwaiz G , Benci V , Gazzola F . Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal TMA, 2014, 186: 18- 34 | | 10 | Arioli G , Gazzola F . Torsional instabilty in suspension bridges: the Tacoma Narrows Bridge case. Comm Nonlin Sci Numer Simul, 2017, 42: 342- 357 | | 11 | Tacoma Narrows Bridges collapse, http://www.youtube.com/watch?v=3mclp9QmCGs, 1940 | | 12 | Chueshov I, Lasiecka I. Von Kármán Evolution Equations, Well-posedness and Long-Time Dynamics. New York: Springer-Verlag, 2010 | | 13 | Ferreira V , Gazzola F , Moreira dos Santos E . Instability of modes in a partially hinged rectangular plate. J Diff Equa, 2016, 261: 6302- 6340 | | 14 | Chang K C. Methods in Nonlinear Analysis. Berlin: Springer, 2005 |
|