| 1 | Beatson R K , Dyn N . Multiquadric B-Splines. J Approx Theory, 1996, 87 (1): 1- 24 | | 2 | Black F , Scholes M . The pricing of options and corporate liabilities. J Polit Econ, 1973, 81 (3): 637- 654 | | 3 | Carr P , Wu L . The finite moment log stable process and option pricing. J Finance, 2003, 58 (2): 753- 777 | | 4 | Cartea á . Derivatives pricing with marked point processes using tick-by-tick data. Quant Finance, 2013, 13 (1): 111- 123 | | 5 | Cartea á , Del-Castillo-Negrete D . Fractional diffusion models of option prices in markets with jumps. Physica A, 2006, 374 (2): 749- 763 | | 6 | Chen W , Xu X , Zhu S . Analytically pricing European-style options under the modified BlackScholes equation with a spatial-fractional derivative. Q Appl Math, 2014, 72 (3): 597- 611 | | 7 | Fasshauer G , Zhang J . On choosing "optimal" shape parameters for RBF approximation. Numer Algorithms, 2007, 45 (1/4): 345- 368 | | 8 | Fu Z , Reutskiy S , Sun H , et al. A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl Math Lett, 2019, 94, 105- 111 | | 9 | Gao G , Sun Z , Zhang H . A new fractional numerical differention formula to approximate the Caputo fractional derivative and its applications. J Comput Phys, 2014, 259, 33- 50 | | 10 | Gao Q , Wu Z , Zhang S . Adaptive moving knots meshless method for simulating time dependent partial differential equations. Eng Anal Bound Elem, 2018, 96, 115- 122 | | 11 | Jumarie G . Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio. Comput Math With Appl, 2010, 59 (3): 1142- 1164 | | 12 | Liang J , Wang J , Zhang W , et al. The solutions to a bi-fractional Black-Scholes-Merton differential equation. Int J Pure Appl Math, 2010, 58 (1): 99- 112 | | 13 | Ma L , Wu Z . Approximation to the k-th derivatives by multiquadric quasi-interpolation method. J Comput Appl Math, 2009, 231 (2): 925- 932 | | 14 | Wu Z , Schaback R . Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math Appl Sin, 1994, 10 (4): 441- 446 | | 15 | Wyss W . The fractional Black-Scholes equation. Fract Calc Appl Anal, 2000, 3 (1): 51- 61 | | 16 | Zhang H , Liu F , Turner L , et al. Numerical solution of the time fractional Black-Scholes model governing European options. Comput Math With Appl, 2016, 71 (9): 1772- 1783 | | 17 | Zhang S , Yang H , Yang Y . A multiquadric quasi-interpolations method for CEV option pricing model. J Comput Appl Math, 2019, 347, 1- 11 |
|