| 1 | Massatt P . Limiting behavior for strongly damped nonlinear wave equations. J Differ Equ, 1983, 48 (3): 334- 349 | | 2 | Huang F L . On the mathematical model for linear elastic systems with analytic damping. SIAM J Control Optim, 1988, 26 (3): 714- 724 | | 3 | Griniv R O , Shkalikov A A . Exponential stability of semigroups related to operator models in mechanics. Math Notes, 2003, 73 (5): 618- 624 | | 4 | Weiss G , Tucsnak M . How to get a conservative well-posed linear system out of thin air. Part Ⅱ. Controllability and stability. SIAM J Control Optim, 2003, 42 (3): 907- 935 | | 5 | Bátkai A , Engel K J . Exponential decay of 2 × 2 operator matrix semigroups. J Comput Anal Appl, 2004, 6 (2): 153- 163 | | 6 | 邱汶汶, 齐雅茹. 一类无界算子的二次数值域和谱. 数学物理学报, 2020, 40A (6): 1420- 1430 | | 6 | Qiu W W , Qi Y R . The quadratic numerical range and the spectrum of some unbounded block operator matrices. Acta Math Sci, 2020, 40A (6): 1420- 1430 | | 7 | Jacob B , Trunk C . Location of the spectrum of operator matrices which are associated to second order equations. Oper Matrices, 2007, 1 (1): 45- 60 | | 8 | Jacob B , Trunk C , Winklmeier M . Analyticity and riesz basis property of semigroups associated to damped vibrations. J Evol Equ, 2008, 8 (2): 263- 281 | | 9 | Jacob B , Trunk C . Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics. Semigroup Forum, 2009, 79 (1): 79- 100 | | 10 | Artamonov N V . Estimate of the decay exponent of an operator semigroup associated with a second-order linear differential equation. Math Notes, 2012, 91 (5/6): 731- 734 | | 11 | Jacob B , Langer M , Tretter C . Variational principles for self-adjoint operator functions arising from second order systems. Oper Matrices, 2016, 10 (3): 501- 531 | | 12 | Jacob B , Tretter C , Trunk C , Vogt H . Systems with strong damping and their spectra. Math Methods Appl Sci, 2018, 41 (16): 6546- 6573 | | 13 | Huang F L . Some problems for linear elastic systems with damping. Acta Math Sci, 1990, 10 (3): 319- 326 | | 14 | Mugnolo D. A variational approach to strongly damped wave equations//Amann W, Arendt M, Hieber I, Neubrander FM, Nicaise S, eds. Functional Analysis and Evolution Equations: The Günter Lumer Volume. Basel: Birkh?user, 2008: 503-514 | | 15 | Francesca B . A dirichlet boundary contral problem for the strongly damped wave equation. SIAM J Control Optim, 1992, 30 (5): 1092- 1100 | | 16 | Chen S P , Liu K S , Liu Z Y . Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping. SIAM J Appl Math, 1998, 50 (2): 651- 668 | | 17 | Lasiecka I , Pandolfi L , Triggiani R . A singular control approach to highly damped second-order abstract equations and applications. Appl Math Optim, 1997, 36, 67- 107 | | 18 | Weidmann J . Linear Operators in Hilbert Spaces. New York: Springer-Verlag, 1980 | | 19 | Bognar J . Indefinite Inner Product Spaces. New York: Springer-Verlag, 1974 | | 20 | 吴德玉, 阿拉坦仓. 分块算子矩阵谱理论及其应用. 北京: 科学出版社, 2013 | | 20 | Wu D Y , Alatancang . The Spectral Theory of Block Operator Matrices and Its Applications. Beijing: Science Press, 2013 | | 21 | Kato T . Perturbation Theory for Linear Operators. Berlin: Springer-Verlag, 1976 | | 22 | Hundertmark D , Lee Y R . Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schr?dinger operator related to NLS. Bull London Math Soc, 2007, 39 (5): 709- 720 | | 23 | Azizov T Y , Jonas P , Trunk C . Spectral points of type π+ and π- of self-adjoint operators in Krein spaces. J Funct Anal, 2005, 226, 114- 137 |
|