| [1] | Hirota R. Direct methods in soliton theory// Bullough R K and Caudrey P J. Solitons. Berlon: Springer-Verlag, 1980: 157-176 |
| [2] | Hirota R. Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27(18): 1192-1194 |
| [3] | Matsuno Y. Bilinear Transformation Method. New York: Academic Press, 1984 |
| [4] | Satsuma J. $N$-soliton solution of the two-dimensional Korteweg-de Vries equation. J Phys Soc Japan, 1976, 40: 286-290 |
| [5] | Hirota R. Exact solution of the sine-Gordon equations for multiple collsions of solitons. J Phys Soc Japan, 1972, 33: 1459-1463 |
| [6] | Hirota R. Exact $N$-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J Math Phys, 1973, 14: 810-814 |
| [7] | Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations. J Math Phys, 1987, 28: 1732-1742 |
| [8] | Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations. J Math Phys, 1987, 28: 2094-2101 |
| [9] | Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. III. Sine-Gordon-type bilinear equations. J Math Phys, 1987, 28: 2586-2592 |
| [10] | Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. IV. Complex bilinear equations. J Math Phys, 1988, 29: 628-635 |
| [11] | Hu X B. Hirota-type equations, soliton solutions, B?cklund transformations and conservation laws. J Part Diff Eq, 1990, 3: 87-95 |
| [12] | Hu X B. Generalized Hirota's bilinear equations and their soliton solutions. J Phys A, 1993, 26: 465-471 |
| [13] | Hirota R. Fundamental properties of the binary operators in soliton theory and their generalization. //Takeno S. Dynamical Problems in Soliton Systems. Berlin: Springer-Verlag, 1985: 42-49 |
| [14] | Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2: 140-144 |
| [15] | Xia Q, Lou S Y. Localized excitations of a generalised Jimbo-Miwa equation. Commun Theor Phys, 2018, 70: 1-6 |
| [16] | Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl, 1970, 15: 539-541 |
| [17] | Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92: 691-715 |
| [18] | Biondini G, Pelinovsky D E. Kadomtsev-Petviashvili equation. Scholarpedia, 2008, 3: 6539-6547 |
| [19] | Pelinovsky D E, Stepanyants Y A, Kivshar Y S. Self-focusing of plane dark solitons in nonlinear defocusing media. Phys Rev E, 1995, 51: 5016-5026 |
| [20] | Druyma V S. On the analytical solution of the two-dimensional Korteweg-de Vries equation. Sov Phys JETP Lett, 1974, 19: 753-757 |
| [21] | Ablowitz M J, Villarroel J. On the Kadomtsev Petviashvili equation and associated constraints. Stud Appl Math, 1991, 85: 195-213 |
| [22] | Freeman N C, Nimmo J J C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique. Phys Lett A, 1983, 95: 1-3 |
| [23] | Ablowitz M, Segur H. Solitons and the Inverse Scattering Transform. Philadephia: Society for Industrial and Applied Mathematics, 1981 |
| [24] | Kodama Y, Williams L. KP solitons and total positivity for the Grassmannian. Invent Math, 2014, 198: 637-699 |
| [25] | Date E, Jimbo M, Kashiwara M, Miwa T. Transformation groups for soliton equations: III. Operator approach to the Kadomtsev-Petviashvili equation. J Phys Soc Japan, 1981, 50: 3806-3812 |
| [26] | Date E, Jimbo M, Kashiwara M, Miwa T. Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type. Physica D, 1982, 4: 343-365 |
| [27] | Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004 |
| [28] | Date E, Kashiwara M, Miwa T. Transformation groups for soliton equations: II. Vertex operators and $\tau$ functions. Proc Japan Acad Ser A Math Sci, 1981, 57: 387-392 |
| [29] | Hirota R. Soliton solutions to the BKP equations: I. The Pfaffian techniqueon. J Phys Soc Japan, 1989, 58: 2285-2296 |
| [30] | Hirota R. Soliton solutions to the BKP equations: II. The Integral Equation. J Phys Soc Japan, 1989, 58: 2705-2712 |
| [31] | Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. Phys Lett A, 1990, 147: 472-476 |
| [32] | Loris I, Willox R. Symmetry reductions of the BKP hierarchy. J Math Phys, 1999, 40: 1420-1431 |
| [33] | 刘青平, Manas M. BKP方程族的 Pfaffian解. 数学年刊, 2002, 23A(6): 693-698 |
| [33] | Liu Q P, Manas M. On the Pfaffian solutions of the BKP hierarchy. Chin Ann Math, 2002, 23A(6): 693-698 |
| [34] | Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959 |
| [35] | Ma W X, Pekcan A. Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations. Z Naturforsch A, 2001, 66: 377-382 |
| [36] | Wazwaz A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun Nonlin Sci Numer Simul, 2012, 17: 491-495 |
| [37] | Ma W X, Xia T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation. Phys Scr, 2013, 87: 055003 |
| [38] | Wu J P, Geng X G. Novel Wronskian condition and new exact solutions to a (3+1)-dimensional generalized KP equation. Commun Theor Phys, 2013, 60: 556-560 |
| [39] | Wazwaz A M, El-Tantawy S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Nonlinear Dyn, 2016, 84: 1107-1112 |
| [40] | You F C, Xia T C, Chen D Y. Decomposition of the generalized KP, cKP and mKP and their exact solutions. Phys Lett A, 2008, 372: 3184-3194 |