| [1] | D'ambrosio L, Lucente S. Nonlinear Liouville theorems for Grushin and Tricomi operators. J Differential Equations, 2003, 193(2): 511-541 |
| [2] | Yagdjian K. A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J Differential Equations, 2004, 206(1): 227-252 |
| [3] | Yagdjian K. Global existence for the $n$-dimensional semilinear Tricomi-type equations. Comm Partial Differential Equations, 2006, 31(6): 907-944 |
| [4] | Sun Y Q. Sharp lifespan estimates for subcritical generalized semilinear Tricomi equations. Math Meth Appl Sci, 2021, 44(13): 10239-10251 |
| [5] | Lin J Y, Tu Z H. Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2(2019) |
| [6] | He D Y, Witt I, Yin H C. On the global solution problem for semilinear generalized Tricomi equations, I. Calc Var, 2017, 56(2): Article 21 |
| [7] | He D Y, Witt I, Yin H C. On semilinear Tricomi equations in one space dimension. Preprint, arXiv:1810. 12748(2018) |
| [8] | He D Y, Witt I, Yin H C. On semilinear Tricomi equations with critical exponents or in two space dimensions. J Differential Equations, 2017, 263(12): 8102-8137 |
| [9] | He D Y, Witt I, Yin H C. On the Strauss index of semilinear Tricomi equation. Commun Pure Appl Anal, 2020, 19(10): 4817-4838 |
| [10] | Chen W H, Lucente S, Palmieri A. Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity. Nonlinear Anal Real World Appl, 2021, 61: 103354 |
| [11] | Palmieri A. Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. Z Angew Math Phys, 2021, 72: Article 64 |
| [12] | Palmieri A. On the the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity. Preprint, arXiv:2105.09879(2021) |
| [13] | Chen W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202: 112160 |
| [14] | Chen W H, Reissig M. Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275: 733-756 |
| [15] | Chen W H, Palmieri A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40: 5513-5540 |
| [16] | Chen W H, Palmieri A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. Z Angew Math Phys, 2019, 70(2): Article 67 |
| [17] | Chen W H, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J Differential Equations, 2021, 292: 176-219 |
| [18] | 欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性. 数学物理学报, 2021, 41A(5): 1372-1381 |
| [18] | Ouyang B P, Xiao S Z. Nonexistence of global solutions for a semilinear Double-Wave equation with a nonlinear memory term. Acta Mathematica Scientia, 2021, 41A(5): 1372-1381 |
| [19] | Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263: 5377-5394 |
| [20] | Palmieri A, Takamura A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187: 467-492 |
| [21] | Yordanov B T, Zhang Q S. Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231(2): 361-374 |
| [22] | Lai N A, Takamura H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equ, 2019, 32: 37-48 |
| [23] | Olver F W J, Lozier D W, Boisvert R F, Clark C W. NIST Handbook of Mathematical Functions. New York: Cambridge University Press, 2010 |
| [24] | Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differ Equ, 2019, 266(2/3): 1176-1220 |