| [1] | Applebaum D. Lévy Processes and Stochastic Calculus. United Kingdom: Cambridge University Press, 2009 |
| [2] | Basawa I, Scott D. Asymptotic Optimal inference for Non-ergodic Models. New York: Springer, 1983 |
| [3] | Bercu B, Pro?a F, Savy N. On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Statist Probab Lett, 2014, 85: 36-44 |
| [4] | Bo L, Wang Y, Yang X, Zhang G. Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Statist Plann Inference, 2011, 141: 588-596 |
| [5] | Dietz H. Asymptotic behavior of trajectory fitting estimators for certain non-ergodic SDE. Stat Inference Stoch Process, 2001, 4: 249-258 |
| [6] | Dietz H, Kutoyants Y. A class of minimum-distance estimators for diffusion processes with ergodic properties. Stat Decis, 1997, 15: 211-227 |
| [7] | Dietz H, Kutoyants Y. Parameter estimation for some non-recurrent solutions of SDE. Stat Decis, 2003, 21: 29-45 |
| [8] | Fama E. Mandelbrot and the stable Paretian hypothesis. J Business, 1963, 36: 420-429 |
| [9] | Hu Y, Long H. Parameter estimation for Ornstein-Uhlenbeck processes driven by $\alpha$-stable Lévy motions. Commun Stoch Anal, 2007, 1: 175-192 |
| [10] | Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by $\alpha$-stable motions. Stochastic Process Appl, 2009, 119: 2465-2480 |
| [11] | Hu Y, Long H. On the singularity of least squares estimator for mean-reverting $\alpha$-stable motions. Acta Math Sci, 2009, 29B(3): 599-608 |
| [12] | Janicki A, Weron A. Simulation and Chaotic Behavior of $\alpha$-stable Stochastic Processes. New York: Marcel Dekker, 1994 |
| [13] | Jeong H, Tomber B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 378-382 |
| [14] | Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Stat Papers, 2015, 56: 257-268 |
| [15] | Kessler M. Estimation of an ergodic diffusion from discrete observations. Scand J Statist, 1997, 24: 211-229 |
| [16] | Kutoyants Y. Statistical Inference for Ergodic Diffusion Processes. Heidelberg: Springer-Verlag, 2004 |
| [17] | Long H. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Math Sci, 2010, 30B(3): 645-663 |
| [18] | Mandelbrot B. The Pareto-Lévy law and the distribution of income. Int Econ Rev, 1960, 1: 79-106 |
| [19] | Pan Y, Yan L. The least squares estimation for the $\alpha$-stable Ornstein-Uhlenbeck process with constant drift. Methodol Comput Appl Probab, 2019, 21: 1165-1182 |
| [20] | Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999 |
| [21] | Shimizu Y. Local asymptotic mixed normality for discretely observed non-recurrent Ornstein-Uhlenbeck processes. Ann Inst Stat Math, 2012, 64: 193-211 |
| [22] | Xu W, Wu C, Dong Y, Xiao W. Modeling Chinese stock returns with stable distribution. Math Comput Model, 2011, 54: 610-617 |
| [23] | Zang Q, Zhang L. Asymptotic behaviour of the trajectory fitting estimator for reflected Ornstein-Uhlenbeck Processes. J Theor Probab, 2019, 32: 183-201 |
| [24] | Zang Q, Zhu C. Asymptotic behaviour of parametric estimation for nonstationary reflected Ornstein-Uhlenbeck processes. J Math Anal Appl, 2016, 444: 839-851 |
| [25] | Zhang S, Zhang X. A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric $\alpha$-stable motions. Ann Inst Statist Math, 2013, 65: 89-103 |
| [26] | Zhang X, Yi H, Shu H. Nonparametric estimation of the trend for stochastic differential equations driven by small $\alpha$-stable noises. Statist Probab Lett, 2019, 151: 8-16 |
| [27] | Zhang X, Yi H, Shu H. Parameter estimation for non-stationary reflected Ornstein-Uhlenbeck processes driven by $\alpha$-stable noises. Statist Probab Lett, 2020, 156: 108617 |
| [28] | Zhang X, Yi H, Shu H. Parameter estimation for certain nonstationary processes driven by $\alpha$-stable motions. Comm Statist Theory Methods, 2021, 50: 95-104 |
| [29] | Zolotarev V. One-Dimensional Stable Distribution. Providence: American Mathematical Society, 1986 |