| [1] | Goldstein A A. Convex programming in Hilbert space. Bull New Ser Am Math Soc, 1964, 70(5): 109-112 |
| [2] | Korpelevich G M. The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody, 1976, 12: 747-756 |
| [3] | Tseng P. A modified forward-backward splitting method for maximal monotone mapping. SIAM J Control Optim, 2000, 38(2): 431-446 |
| [4] | Cai G, Yekini S, Iyiola O S. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-lipschitz operators. J Ind Manag Optim, 2021, 1: 1-30 |
| [5] | Moudafi A. Viscosity approximation methods for fixed-points problems. J Math Anal Appl, 2000, 241: 46-55 |
| [6] | Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings//Butnariu D, Censor Y, Reich S, Eds. Inherently Parallel Algorithms in Feasibility and Optimization and Their Application. New York: Elservier, 2001: 473-504 |
| [7] | Halpern B. Fixed points of nonexpanding maps. Bull Amer Math, 1967, 73: 957-961 |
| [8] | Ishikawa S. Fixed points by a new iteration method. Proc Amer Math Soc, 1974, 44: 147-150 |
| [9] | Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert spaces. J Math Anal Appl, 2006, 318: 43-52 |
| [10] | Tian M. A general iterative method for nonexpansive mappings in Hilbert spaces. Nonlinear Anal, 2010, 73(3): 689-694 |
| [11] | Ke Y F, Ma C F. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl, 2015, 2015: 190 |
| [12] | Nadezhkina N, Takahashi W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128(1): 191-201 |
| [13] | Thong D V, Hieu D V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 80(4): 1283-1307 |
| [14] | Ceng L C, Shang M J. Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization, 2021, 70(4): 715-740 |
| [15] | Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 |
| [16] | Cottle R W, Yao J C. Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 72(2): 281-295 |
| [17] | Xu H K. Iterative algorithms for nonlinear operators. J London Math Soc, 2002, 66: 240-256 |
| [18] | Xu H K, Kim T H. Convergence of hybrid steepest-descent methods for variational inequalities. J Optim Theory Appl, 2003, 119(1): 185-201 |
| [19] | Glowinski R, Lions J L, Trémolières R. Numerical Analysis of Variational Inequalities. Amsterdam: Elsevier, 1981 |
| [20] | Iusem A, Otero R G. Inexact versions of proximal point and augmented lagrangian algorithms in Banach spaces. Numer Funct Anal Optim, 2001, 22: 609-640 |
| [21] | Denisov S V, Semenov V V, Chabak L M. Convergence of the modified extragradient method for variational inequalities with non-lipschitz operators. Cybern Syst Anal, 2015, 51: 757-765 |
| [22] | He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities. J Optim Theory Appl, 2002, 112(1): 111-128 |
| [23] | Sun D F. A projection and contraction method for the nonlinear complementarity problem and it's extensions. Math Numer Sinica, 1994, 16(3): 183-194 |