| [1] | Alikakos A D. An application of the invariance principle to reaction-diffusion equations. J Differential Equations, 1979, 33: 201-225 |
| [2] | Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992 |
| [3] | Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011 |
| [4] | Cao D M, Sun C Y, Yang M H. Dynamics for a stochastic reaction-diffusion equation with additive noise. J Differential Equations, 2015, 259: 838-872 |
| [5] | Cholewa J W, Dlotko T. Global Attractors in Abstract Parabolic Problems. Cambridge: Cambridge university Press, 2000 |
| [6] | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematival Society, 1988 |
| [7] | Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969 |
| [8] | Marion M. Attractors for reactions-diffusion equations: existence and estimate of their dimension. Appl Anal, 1987, 25: 101-147 |
| [9] | Marion M. Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J Dynamic Differential Equations, 1989, 1: 245-267 |
| [10] | Robinson J C. Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001 |
| [11] | Sun C Y, Yuan L L, Shi J C. Higher-order integrability for a semilinear reaction-diffusion equation with distribution derivatives in $\Bbb R ^{N}$. Appl Math Lett, 2013, 26: 949-956 |
| [12] | Sun C Y, Yuan Y B. $L^{p}$ -type pullback attractors for a semilinear heat equation on time-varying domains. Proc Roy Soc Edinburgh Sect A, 2015, 145: 1029-1052 |
| [13] | Sun C Y, Zhong C K. Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains. Nonlinear Anal, 2005, 63: 49-65 |
| [14] | Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 1997 |
| [15] | Wang B. Attractors for reaction-diffusion equations in unbounded domains. Physica D, 1999, 128: 41-52 |
| [16] | Xiao Y P, Sun C Y. Higher-order asymptotic attraction of pullback attractors for a reaction-diffusion equation in non-cylindrical domains. Nonlinear Anal, 2015, 113: 309-322 |
| [17] | Xie Y Q, Li Q S, Huang C X, Jiang Y J. Aattractors for the semilinear reaction-diffusion equation with distribution derivatives. J Math Phys, 2013, 54(9): 092701 |
| [18] | Zhang J, Zhong C K. The existence of global attractors for a class of reaction-diffusion equations with distribution derivatives terms in $\Bbb R ^{n}$. J Math Anal Appl, 2015, 427: 365-376 |
| [19] | Zhong C K, Yang M H, Sun C Y. The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. J Differential Equations, 2006, 223: 367-399 |
| [20] | Zhu K X, Zhou F. Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\Bbb R ^{N}$. Comput Math Appl, 2016, 71: 2089-2105 |