| [1] | Li M L, Zu J. The review of differential matrix models of HBV infection dynamics. J Virol Methods, 2019, 266: 103-113 | | [2] | Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in Hepatitis B virus infection. P Natl Acad Sci USA, 1996, 93(9): 4398-4402 | | [3] | Min L, Su Y M, Kuang Y. Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mountain J Math, 2008, 38(5): 1573-1585 | | [4] | 李喜玲, 高飞, 李文琴. 具有免疫时滞的分数阶 HBV 感染模型稳定性分析. 数学物理学报, 2021, 41A(2): 562-576 | | [4] | Li X L, Gao F, Li W Q. Stability analysis of fractional-order hepatitis B virus infection model with immune delay. Acta Math Sci, 2021, 41A(2): 562-576 | | [5] | Wang K F, Wang W D. Propagation of HBV with spatial dependence. Math Biosci, 2007, 210(1): 78-95 | | [6] | Wang K F, Wang W D, Song S P. Dynamics of an HBV model with diffusion and delay. J Theor Biol, 2008, 253(1): 36-44 | | [7] | Gan Q T, Xu R, Yang P H, et al. Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J Appl Math, 2010, 75(3): 392-417 | | [8] | Xu R, Ma Z N. An HBV model with diffusion and time delay. J Theor Biol, 2009, 257(3): 499-509 | | [9] | Zhang Y Y, Xu Z T. Dynamics of a diffusive HBV model with delayed Beddington-Deangelis response. Nonlinear Anal RWA, 2014, 15: 118-139 | | [10] | 杨瑜, 周金玲. 一类具有扩散和Beddington-DeAngelis反应函数的病毒模型的全局稳定性. 高校应用数学学报, 2016, 31(2): 161-166 | | [10] | Yang Y, Zhou J L. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function. Appl Math Journal of Chinese Universities, 2016, 31(2): 161-166 | | [11] | Hattaf K, Yousfi N. A generalized HBV model with diffusion and two delays. Comput Math Appl, 2015, 69(1): 31-40 | | [12] | Guidotti L G, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science, 1999, 284: 825-829 | | [13] | Goyal A, Murray J M. Modelling the impact of cell-to-cell transmission in hepatitis B virus. Plos ONE, 2016, 11( 8): e0161978 | | [14] | 杨翠兰, 刘贤宁. 一个具有细胞-细胞传播和时滞的病毒动力学模型. 西南大学学报(自然科学版), 2015, 37(5): 97-101 | | [14] | Yang C L, Liu X N. A virus dynamical model with cell-to-cell viral transmission and delay. Journal of Southwest University of China (Natural Science Edition), 2015, 37(5): 97-101 | | [15] | Sun H Q, Wang J L. Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay. Comput Math Appl, 2019, 77(1): 284-301 | | [16] | Manna K, Chakrabarty S. P. Chronic Hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun Nonlinear Sci Numer Simulat, 2015, 22(1-3): 383-395 | | [17] | Liu S H, Zhang R. On an age-structured Hepatitis B virus infection model with HBV DNA-containing capsids. Bull Malays Math Sci Soc, 2021, 44(3): 1345-1370 | | [18] | Manna K. Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int J Biomath, 2017, 10( 5): 1750062 | | [19] | Guo T, Liu H H, Xu C L, et al. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discret Contin Dyn Syst Ser B, 2018, 23(10): 4223-4242 | | [20] | Manna K, Hattaf H. Spatiotemporal dynamics of a generalized HBV infection model with capsids and adaptive immunity. Int J Appl Comput Math, 2019, 5: 65 | | [21] | Webb G F. A reaction-diffusion model for a deterministic diffusive epidemic. J Math Anal Appl, 1981, 84(1): 150-161 | | [22] | Webb G F. Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcell Dekker Inc, 1985 | | [23] | Protter M H, Weinberger H F. Maximum Principles in Differential Equations. New York: Springer Science & Business Media, 2012 | | [24] | Wang J L, Wang J. Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J Dyn Differ Equ, 2021, 33: 549-575 | | [25] | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: Amer Math Soc, 1988 | | [26] | Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Vol 99. New York:Springer Science & Business Media, 2013 | | [27] | Smith H L, Zhao X Q. Robust persistence for semidynamical systems. Nonlinear Anal: TMA, 2001, 47(9): 6169-6179 |
|