数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 713-732.
收稿日期:
2022-04-11
修回日期:
2022-10-19
出版日期:
2023-06-26
发布日期:
2023-06-01
通讯作者:
陈淑红
E-mail:shiny0320@163.com
基金资助:
Received:
2022-04-11
Revised:
2022-10-19
Online:
2023-06-26
Published:
2023-06-01
Contact:
Shuhong Chen
E-mail:shiny0320@163.com
Supported by:
摘要:
该文主要考虑奇异对流方程组非常弱解的梯度部分正则性. 首先, 结合Lorentz空间及其与Lebesgue 空间之间的关系, 推出奇异对流方程组在
中图分类号:
陈淑红,谭忠. 奇异对流方程组非常弱解的梯度正则性[J]. 数学物理学报, 2023, 43(3): 713-732.
Chen Shuhong,Tan Zhong. Gradient Regularity of Very Weak Solution to Elliptic Equations with Singular Convection[J]. Acta mathematica scientia,Series A, 2023, 43(3): 713-732.
[1] |
Acerbi E, Fusco N. A regularity theorem for minimizers of quasiconvex variational integrals. Arch Ration Mech Anal, 1987, 99: 261-281
doi: 10.1007/BF00284509 |
[2] |
Acerbi E, Mingione G, Seregin G A. Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann Inst H Poincare Anal Non Lineaire, 2004, 21: 25-60
doi: 10.4171/aihpc |
[3] |
Almgren F J. Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Annals of Math, 1968, 87: 321-391
doi: 10.2307/1970587 |
[4] |
Chen S, Tan Z. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335: 20-42
doi: 10.1016/j.jmaa.2007.01.042 |
[5] | Duzaar F, Grotowski J F. Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manu Mat, 2000, 103: 267-298 |
[6] |
Duzaar F, Mingione G. Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann Inst H Poincare Anal Non Lineaire, 2005, 22: 705-751
doi: 10.4171/aihpc |
[7] | 徐明月, 赵才地,Tomas C. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性. 数学物理学报, 2021, 41A(2): 336-345 |
Xu M Y, Zhao C D, Tomas C. Degenerate regularity of trajectory statistical solutions for the 3D incompressible Navier-Stokes equations. Acta Math Sci, 2021, 41A(2): 336-345 | |
[8] | 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次A -调和方程弱解的梯度估计. 数学物理学报, 2020, 40A(2): 379-395 |
Zhang Y N, Yan S, Tong Y X. Gradient estimates for weak solutions to non-homogeneous -harmonic equations under natural growth. Acta Math Sci, 2020, 40A(2): 379-395 | |
[9] | 邹维林, 任远春, 肖美萍. 系数的$L^1$相互关系对非线性退化椭圆方程解的正则性的影响. 数学物理学报, 2021, 41A(5): 1405-1415 |
Zou W L, Ren Y C, Xiao M P. Regularizing effect of $L^1$ interplay between coefficients in nonlinear degenerate elliptic equaitons. Acta Math Sci, 2021, 41A(5): 1405-1415 | |
[10] |
Porretta A. Weak solutions to Fokker equations and mean field games. Arch Ration Mech Anal, 2015, 216(1): 1-62
doi: 10.1007/s00205-014-0799-9 |
[11] | Bocccardo L. Quelques problemes de Dirichlet avec donnees dans de grands espaces de Sobolev. C R Acad Sci Paris Ser I Math, 1997, 325(12): 1267-1272 |
[12] | Carozza M, Moscariello G, Passarelli D N A. Nonlinear equations with growth coefficients in BMO. Houston J Math, 2002, 28(4): 917-929 |
[13] |
Fiorenza A, Sbordone C. Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Studia Math, 1998, 127: 223-231
doi: 10.4064/sm-127-3-223-231 |
[14] | Boccardo L. Some developments on Dirichlet problems with discontinuous coefficients. Boll Unione Mat Ital, 2009, 92: 285-297 |
[15] | Moscariello G. Existence and uniqueness for elliptic equations with lower-order terms. Adv Calc Var, 2011, 4(4): 421-444 |
[16] |
Zecca G. Existence and uniqueness for nonlinear elliptic equations with lower-order terms. Nonlinear Anal, 2012, 75(2): 899-912
doi: 10.1016/j.na.2011.09.022 |
[17] | Greco L, Moscariello G, Zecca G. Regularity for solutions to nonlinear elliptic equations. Differential Integral Equations, 2013, 26(9/10): 1105-1113 |
[18] |
Radice T, Zecca G. Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients. Ric Mat, 2014, 63(2): 355-367
doi: 10.1007/s11587-014-0202-z |
[19] |
Greco L, Moscariello G, Zecca G. Very weak solutions to elliptic equations with singular convection term. J Math Anal Appl, 2018, 457(2): 1376-1387
doi: 10.1016/j.jmaa.2017.03.025 |
[20] |
Iwaniec T, Migliaccio L, Nania L, et al. Integrability and removability results for quasiregular mappings in high dimensions. Math Scand, 1994, 75: 263-279
doi: 10.7146/math.scand.a-12519 |
[21] | Campanato S. Proprieta di Holderianita di alcune classi di funzioni. Ann Sc Norm Sup Pisa Ser III, 1963, 17: 175-188 |
[22] | Campanato S. Equazioni ellittiche del $II^e$ ordine e spazi $L^{2,\lambda}$. Ann Mat Appl, 1965, 69: 321-381 |
[23] | Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann Math Stud. Princeton: Princeton Univ Press, 1983, 105 |
[24] |
Greco L, Iwaniec T, Sbordone C. Inverting the $p$-harmonic operator. Manuscripta Math, 1997, 92(2): 249-258
doi: 10.1007/BF02678192 |
[25] | O'Neil R. Convolution operators and $L(p, q)$ spaces. Duke Math J, 1963, 30: 129-142 |
[1] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[2] | 左文文, 周寿明. 带源项的抛物-抛物高维 Keller-Segel 方程的全局解[J]. 数学物理学报, 2025, 45(4): 1100-1109. |
[3] | 朱伟鹏, 李金禄, 吴星. 带阻尼Boussinesq方程的一类大初值整体光滑解[J]. 数学物理学报, 2025, 45(4): 1077-1085. |
[4] | 寿晓华, 钟新. 三维非等温可压缩向列型液晶流的Serrin准则[J]. 数学物理学报, 2025, 45(4): 1058-1076. |
[5] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[6] | 王汉义, 黄诗雨, 向建林. 一类Kirchhoff型椭圆方程的山路解和基态解[J]. 数学物理学报, 2025, 45(4): 1041-1057. |
[7] | 孙泽欣, 张丽, 包雄雄. 高维时空周期媒介中部分退化模型的传播速度[J]. 数学物理学报, 2025, 45(4): 1110-1127. |
[8] | 段誉, 孙歆. 一类 Klein-Gordon-Maxwell 系统解的存在性和多重性[J]. 数学物理学报, 2025, 45(3): 756-766. |
[9] | 冯振东, 郭飞, 李岳群. 一类半线性波动方程弱耦合系统解的破裂[J]. 数学物理学报, 2025, 45(3): 726-747. |
[10] | 鹿高杰, 韩众, 刘露. 非局域反时空高阶非线性薛定谔方程的达布变换及其精确解[J]. 数学物理学报, 2025, 45(3): 767-775. |
[11] | 刘羽, 陈光淦, 李树勇. 随机 Kuramoto-Sivashinsky 方程行波解的非线性稳定[J]. 数学物理学报, 2025, 45(3): 790-806. |
[12] | 周宇杰,罗纬宇,汪玉峰,张忠祥. 四元数分析中光滑曲面上的 Poincaré-Bertrand 公式[J]. 数学物理学报, 2025, 45(2): 534-553. |
[13] | 李彬,谢莉. 具奇异敏感的趋向性犯罪模型中的警察威慑效应[J]. 数学物理学报, 2025, 45(2): 512-533. |
[14] | 陈娜,王培合. 带有斜边值条件的 Hessian 商方程解的梯度估计[J]. 数学物理学报, 2025, 45(2): 493-511. |
[15] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
|