| [1] | Arrow K J, Debreu G. Existence of an equilibrium for a competitive economy. Econometrica, 1954, 22(3): 265-290 | | [2] | Sonnenschein H. Do Walras' identity and continuity characterize the class of community excess demand functions? J Econom Theory, 1973, 6(4): 345-354 | | [3] | Mantel R R. On the characterization of aggregate excess demand. J Econom Theory, 1974, 7(3): 348-353 | | [4] | Debreu G. Excess demand functions. J Math Econom, 1974, 1(1): 15-21 | | [5] | Tian G. On the existence of price equilibrium in economies with excess demand functions. Econ Theory Bull, 2016, 4(1): 5-16 | | [6] | Anh L Q, Duoc P T, Duy T Q. Existence and well-posedness for excess demand equilibrium problems. Numer Algebra Control Optim, 2023, 13(1): 45-52 | | [7] | Zeng J, Li S J, Zhang W Y, et al. Stability results for convex vector-valued optimization problems. Positivity, 2011, 15(3): 441-453 | | [8] | Li X B, Peng Z Y, Lin Z. Convergence results for Henig proper efficient solution sets of vector optimization problems. Numer Funct Anal Optim, 2014, 35(11): 1419-1434 | | [9] | Peng Z Y, Yang X M. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity. Acta Math Appl Sin Engl Ser, 2014, 30(4): 845-858 | | [10] | Fort M K. Essential and non essential fixed points. Amer J Math, 1950, 72(2): 315-322 | | [11] | Dierker E. Topological Methods in Walrasian Economics. Berlin: Springer, 1974 | | [12] | Tan K K, Yu J, Yuan X Z. Stability of production ecomomies. J Aust Math Soc, 1996, 61(1): 162-170 | | [13] | 向淑文, 张石生. 生产经济平衡点的极小本质集与本质连通区. 应用数学和力学, 2000, 21(8): 817-822 | | [13] | Xiang S W, Zhang S S. The minimal essential set and essential connected region of the equilibrium point of production economy. Appl Math Mech, 2000, 21(8): 817-822 | | [14] | 王能发, 杨哲, 刘自鑫. 一般经济均衡价格点集的通有稳定性和本质连通区. 系统科学与数学, 2017, 37(1): 196-202 | | [14] | Wang N F, Yang Z, Liu Z X. The generic stability and essential components of the price point set of general economic equilibrium. J Systems Sci Math Sci, 2017, 37(1): 196-202 | | [15] | Kapoor S, Lalitha C S. Essential stability in unified vector optimization. J Global Optim, 2021, 80(1): 161-175 | | [16] | Xu Y D, Zhang P P. Connectedness of solution sets of strong vector equilibrium problems with an application. J Optim Theory Appl, 2018, 178(1): 131-152 | | [17] | Fort M K. Points of continuity of semi-continuous functions. Publ Math Debrecen, 1951, 2(1951): 100-102 | | [18] | Long X J, Huang Y Q, Tang L P. Generic stability of the solution mapping for set-valued optimization problems. J Inequal Appl, 2015, 2015(1): 1-8 | | [19] | Zeng J, Li S J, Zhang W Y, et al. Hadamard well-posedness for a set-valued optimization problem. Optim Lett, 2013, 7(3): 559-573 | | [20] | Qiu Q, Yang X. Some properties of approximate solutions for vector optimization problem with set-valued functions. J Global Optim, 2010, 47(1): 1-12 |
|