| [1] | Chen Y H, Huang J C, Xu H Y. Global stability of large solutions of the 3-D compressible magnetohydrodynamic equations. Nonlinear Anal: Real World Appl, 2019, 47: 272-290 | | [2] | Wang S, Chen F, Wang C B. Estimation of decay rates to large-solutions of 3D compressible magnetohydrodynamic system. J Math Phys, 2022, 63: 111507 | | [3] | Wang W J, Wen H Y. Global well-posedness and time-decay estimates for compressible Navier-Stokes equations with reaction diffusion. Sci China Math, 2022, 65: 1199-1228 | | [4] | Fan J S, Yu W H. Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal: Real World Appl, 2009, 10(1): 392-409 | | [5] | Vol'pert A I, Hudjaev S I. On the Cauchy problem for composite systems of nonlinear equations. Math USSR-Sb, 1972, 16(4): 517 | | [6] | Hong G Y, Hou X F, Peng H Y, Zhu C J. Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum. SIAM J Math Anal, 2017, 49(4): 2409-2441 | | [7] | Wang D H. Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J Appl Math, 2003, 63(4): 1424-1441 | | [8] | Li H L, Xu X Y, Zhang J W. Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J Math Anal, 2013, 45(3): 1356-1387 | | [9] | Ducomet B, Feireisl E. The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars. Commun Math Phys, 2006, 266: 595-629 | | [10] | Hu X P, Wang D H. Global solutions to the three-dimensional full compressible magnetohydrodynamics flows. Commun Math Phys, 2008, 283: 255-284 | | [11] | Hu X P, Wang D H. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch Rational Mech Anal, 2010, 197(1): 203-238 | | [12] | Liu S Q, Yu H B, Zhang J W. Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum. J Differ Equ, 2013, 254(1): 229-255 | | [13] | Suen A. Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations. J Differ Equ, 2019, 268(6): 2622-2671 | | [14] | Suen A, Hoff D. Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics. Arch Rational Mech Anal, 2012, 205: 27-58 | | [15] | Wu G C, Zhang Y H, Zou W Y. Optimal time-decay rates for the 3D compressible magnetohydrodynamic flows with discontinuous initial data and large oscillations. J London Math Soc, 2021, 103(3): 817-845 | | [16] | Bie Q Y, Wang Q R, Yao Z A. Global well-posedness of the 3D incompressible MHD equations with variable density. Nonlinear Anal: Real World Appl, 2019, 47: 85-105 | | [17] | Chen F, Guo B L, Zhai X P. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinet Relat Mod, 2019, 12(1): 37-58 | | [18] | Chen F, Li Y S, Xu H. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discret Contin Dyn Syst, 2016, 36(6): 2945-2967 | | [19] | Zhai X P, Li Y S, Yan W. Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J Math Anal Appl, 2015, 432(1): 179-195 | | [20] | Zhai X P, Li Y S, Yan W. Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl Math, 2016, 143(1): 1-13 | | [21] | Chen Q, Tan Z. Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations. Nonlinear Anal: Theory Methods Appl, 2010, 72(12): 4438-4451 | | [22] | Li F C, Yu H J. Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc Roy Soc Edinb Sect A Math, 2, 2011, 141(1): 109-126 | | [23] | Zhang J W, Zhao J N. Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun Math Sci, 2010, 8(4): 835-850 | | [24] | Gao J C, Chen Y H, Yao Z A. Long-time behavior of solution to the compressible magnetohydrodynamic equations. Nonlinear Anal: Theory Methods Appl, 2015, 128: 122-135 | | [25] | Pu X K, Guo B L. Global existence and convergence rates of smooth solutions for the full compressible MHD equations. Z Angew Math Phys, 2013, 64: 519-538 | | [26] | Gao J C, Tao Q, Yao Z A. Optimal decay rates of classical solutions for the full compressible MHD equations. Z Angew Math Phys, 2016, 67(2): 1-22 | | [27] | Tan Z, Wang H Q. Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal: Real World Appl, 2013, 14(1): 188-201 | | [28] | Huang W T, Lin X Y, Wang W W. Decay-in-time of the highest-order derivatives of solutions for the compressible isentropic MHD equations. J Math Anal Appl, 2021, 502(2): 125273 | | [29] | Zhu L M, Zi R Z. Decay estimates of the smooth solution to the compressible magnetohydrodynamic equations on $\mathbb{T}^3$. J Differ Equ, 2021, 288: 1-39 | | [30] | Shi W X, Zhang J Z. A remark on the time-decay estimates for the compressible magnetohydrodynamic system. Appl Anal, 2021, 100(11): 2478-2498 | | [31] | Wei R Y, Li Y, Guo B L. Global existence and convergence rates of solutions for the 3D compressible magnetohydrodynamic equations without heat conductivity. Appl Anal, 2020, 99(10): 1661-1684 | | [32] | Gao J C, Wei Z Z, Yao Z A. Decay rate of strong solution for the compressible magnetohydrodynamic equations with large initial data. Appl Math Lett, 2020, 102: 106100 | | [33] | 王帅, 陈菲, 王传宝. 三维可压缩磁流体力学方程的重要估计. 理论数学, 2022, 12(8): 1305-1311 | | [33] | Wang S, Chen F, Wang C B. The important estimates for compressible MHD equations. Pure Mathematics, 2022, 12(8): 1305-1311 |
|