| [1] | Georgiev A A. Local properties of function fitting estimates with application to system identication. Mathematical Statistics and Application, 1983, 2: 141-151 | | [2] | Georgiev A A. Consistent nonparametric multiple regression: The fixed design case. J Multivariate Anal, 1988, 25(1): 100-110 | | [3] | Roussas G G, Tran L T, Ioannides D A. Fixed design regression for time series: Asymptotic normality. J Multivariate Anal, 1992, 40(2): 262-291 | | [4] | 杨善朝, 李永明. 强混合样本下回归加权估计的一致渐近正态性. 数学学报, 2006, 49A(5): 1163-1170 | | [4] | Yang S C, Li Y M. Uniformly asymptotic normality of the regression weighted estimator for strong mixing samples. Acta Math Sin, 2006, 49A(5): 1163-1170 | | [5] | Yang S C. Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples. Stat Probab Lett, 2003, 62(2): 101-110 | | [6] | Liang H Y, Li Y Y. A Berry-Esseen type bound of regression estimator based on linear process errors. J Korean Math Soc, 2008, 45(6): 1753-1767 | | [7] | Ding L W, Chen P Y, Li Y M. Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence. J Inequal Appl, 2018, 2018(10): 1-12 | | [8] | Antoniadis A, Gregoire G, Mckeague I W. Wavelet methods for curve estimation. J Amer Stat Assoc, 1994, 89(428): 1340-1352 | | [9] | 薛留根. 混合误差下回归函数小波估计的一致收敛速度. 数学物理学报, 2002, 22A(4): 528-535 | | [9] | Xue L G. Uniform convergence rates of the wavelet estimator of regression function under mixing error. Acta Math Sci, 2002, 22A(4): 528-535 | | [10] | 孙燕, 柴根象. 固定设计下回归函数的小波估计. 数学物理学报, 2004, 24A(5): 597-606 | | [10] | Sun Y, Chai G X. Nonparametric wavelet estimation of a fixed designed regression function. Acta Math Sci, 2004, 24A(5): 597-606 | | [11] | Liang H Y, Qi Y Y. Asymptotic normality of wavelet estimator of regression function under NA assumptions. Bull Korean Math Soc, 2007, 44(2): 247-257 | | [12] | 李永明, 尹长明, 韦程东. $\varphi$混合误差下回归函数小波估计的渐近正态性. 应用数学学报, 2008, 31(6): 1016-1055 | | [12] | Li Y M, Yin C M, Wei C D. On the asymptotic normality for $\varphi$-mixing dependent of wavelet regression function estimator. Acta Math Appl Sin, 2008, 31(6): 1016-1055 | | [13] | 李永明, 韦程东. 强混合误差回归函数小波估计的Berry-Esseen界. 数学物理学报, 2009, 29A(5): 1453-1463 | | [13] | Li Y M, Wei C D. Berry-Esseen bounds for wavelet estimator of regression function under strong mixing process. Acta Math Sci, 2009, 29A(5): 1453-1463 | | [14] | Li Y M, Wei C D, Xin G D. Berry-Esseen bounds of wavelet estimator in a regression with linear process errors. Stat Probab Lett, 2011, 81(1): 103-111 | | [15] | 李永明, 郭建华, 杨善朝. 一类混合序列生成的线性过程误差半参数回归模型小波估计的Berry-Esseen界. 应用数学学报, 2013, 36(6): 1021-1036 | | [15] | Li Y M, Guo J H, Yang S C. The Berry-Esseen bounds of wavelet estimators for semiparametric regression model whose errors form a linear process with a mixing innovations. Acta Math Appl Sin, 2013, 36(6): 1021-1036 | | [16] | Ding L W, Li Y M. The Berry-Esseen bounds of wavelet estimator for regression model whose errors form a linear process with a $\rho$-mixing. J Inequal Appl, 2016, 2016(107): 1-12 | | [17] | Ding L W, Chen P Y, Li Y M. Consistency for wavelet estimator in nonparametric regression model with extended negatively dependent samples. Stat Pap, 2020, 61(6): 2331-2349 | | [18] | Li Y M, Pang W C, Feng Z Q, Li N Y. On the linearly extended negative quadrant dependent random variables and its inequalities. Commun Stat Theor M, 2022, doi.org/10.1080/03610926.2022.2068600. | | [19] | Petrov V V. Limit Theory for Probability Theory. New York: Oxford University Press, 1995 |
|