| [1] | Anderson M H, Ensher J R, Matthewa M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 1995, 269: 198-201 | | [2] | Antoine X, Levitt A, Tang Q. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods. Journal of Computational Physics, 2017, 343:92-109 | | [3] | Bao W, Cai Y. Mathematical models and numerical methods for spinor Bose-Einstein condensates. Communications in Computational Physics, 2018, 24: 899-965 | | [4] | Bao W, Du Q. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM Journal on Scientific Computing, 2004, 25: 1674-1697 | | [5] | Bao W, Lim F. Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow. SIAM Journal on Scientific Computing, 2008, 30 1925-1948 | | [6] | Bao W, Tang W. Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional. Journal of Computational Physics, 2003, 187: 230-254 | | [7] | Bao W, Wang H. A mass and magnetization conservervative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates. SIAM Journal on Numerical Analysis, 2007, 45(5): 2177-2200 | | [8] | Bao W, Wang H, Markowich P A. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates. Communications in Mathematical Sciences, 2005, 3(1): 57-88 | | [9] | Bose. Plancks gesetz und lichtquantenhypothese. Zeitschrift fur Physik, 1924, 26: 178-181 | | [10] | Bradley C C, Sackett C A, Tollett J J, Hulet R G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction. Physical Review Letters, 1995, 75: 1687-1690 | | [11] | Cai Y, Liu W. Efficient and accurate gradient flow methods for computing ground states of spinor Bose-Einstein condensates. Journal of Computational Physics, 2021, 433: 110183 | | [12] | Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters, 1995, 75: 3969-3973 | | [13] | Einstein A. Quantentheorie des einatomigen idealen gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1924, 22: 261-267 | | [14] | Einstein A. Quantentheorie des einatomigen idealen gases, zweite abhandlung. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925, 1: 3-14 | | [15] | Ho T L. Spinor Bose condensates in optical traps. Physical Review Letters, 1998, 81: 742-745 | | [16] | Kawaguchi Y, Ueda M. Spinor Bose-Einstein condensates. Physics Reports, 2012, 520: 253-381 | | [17] | Liu W, Cai Y. Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates. SIAM Journal on Scientific Computing, 2021, 43(1): B219-B242 | | [18] | Lin Y J, Compton R L, Jimenez-Garcia K, et al. Synthetic magmetic fields for ultracold neutral stoms. Nature, 2009, 462: 628-632 | | [19] | Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condensates in a uniform light-induced vector potential. Physical Review Letters, 2009, 102: 130401 | | [20] | Lin Y J, Jimenez-Garcia K, Spielman I B. A spin-orbit-coupled Bose-Einstein condensates. Nature, 2011, 471: 83-86 | | [21] | Stamper-Kurn D M, Andrews M R, Chikkatur A P, et al. Optical confinement of a Bose-Einstein condensate. Physical Review Letters, 1998, 80: 2027-2030 | | [22] | Stamper-Kurn D M, Ueda M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Review of Modern Physics, 2013, 85: 1191-1244 | | [23] | Yuan Y, Xu Z, Tang Q, Wang H. The numerical study of the ground states of spin-1 Bose-Einstein condensates with spin-orbit-coupling. East Asian Journal on Applied Mathematics, 2018, 8(3): 598-610 |
|