数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1774-1788.
收稿日期:
2022-08-08
修回日期:
2023-07-07
出版日期:
2023-12-26
发布日期:
2023-11-16
通讯作者:
*袁海龙,E-mail: 基金资助:
Received:
2022-08-08
Revised:
2023-07-07
Online:
2023-12-26
Published:
2023-11-16
Supported by:
摘要:
该文研究了一类在齐次 Neumann 边界条件下具有时滞扩散的 Gierer-Meinhardt 活化抑制模型. 首先, 利用谱理论得到了该模型正平衡点的局部渐近稳定性; 其次, 以时滞为分支参数, 研究了该模型 Hopf 分支的存在性; 接着, 根据偏泛函微分方程的中心流形定理和正规型理论, 得到了该 Hopf 分支方向和分支周期解的稳定性; 最后, 利用 Matlab 软件, 模拟了该系统在临界点附近经历的 Hopf 分支.
中图分类号:
马亚妮, 袁海龙. 一类具有时滞的 Gierer-Meinhardt 活化抑制模型的分支分析[J]. 数学物理学报, 2023, 43(6): 1774-1788.
Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay[J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788.
[1] | 欧阳颀. 反应扩散系统中的斑图动力学. 上海: 上海科技教育出版社, 2000 |
Ou Y X. Turing Dynamics in Reaction Diffusion Systems. Shanghai: Shanghai Science and Technology Education Press, 2000 | |
[2] |
Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik, 1972, 12: 30-39
pmid: 4663624 |
[3] |
Gierer A, Meinhardt H. Application of a theory of biological pattern formation based on lateral inhibition. J Cell Sci, 1974, 15(2): 321-346
doi: 10.1242/jcs.15.2.321 pmid: 4859215 |
[4] | Gierer A, Meinhardt H. Generation and regeneration of sequence of structures during morphogenesis. J Theor Biol, 1980, 3: 429-450 |
[5] |
Wei J C, Winter M. Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case. J Differ Equ, 2002, 178(2): 478-518
doi: 10.1006/jdeq.2001.4019 |
[6] |
Ni W M, Suzuki K, Takagi I. The dynamics of a kinetic activator-inhibitor system. J Differ Equ, 2006, 229(2): 426-465
doi: 10.1016/j.jde.2006.03.011 |
[7] |
Takashi M, Maini P K. Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells. Bull Math Biol, 2004, 66(4): 627-649
doi: 10.1016/j.bulm.2003.09.009 |
[8] |
Gonpot P, Collet J S A J, Sookia N U H. Gierer-Meinhardt model: Bifurcation analysis and pattern formation. Trends Appl Sci Res, 2008, 3: 115-128
doi: 10.3923/tasr.2008.115.128 |
[9] |
Yang R, Song Y L. Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model. Nonlinear Anal: Real World Appl, 2016, 31: 356-387
doi: 10.1016/j.nonrwa.2016.02.006 |
[10] | 杨文彬, 吴建华. 空间齐次和非齐次下活化-抑制模型动力学分析. 数学物理学报, 2017, 37A(22): 390-400 |
Yang W B, Wu J H. Dynamics analysis of activation-inhibition models under spatial homogeneous and heterogeneou. Acta Math Sci, 2017, 37A(22): 390-400 | |
[11] |
Liu J X, Yi F Q, Wei J J. Multiple bifurcation analysis and spatiotemporal patterns in a $1$-D Gierer-Meinhardt model of morphogenesis. Int J Bifurcat Chaos, 2010, 20(4): 1007-1025
doi: 10.1142/S0218127410026289 |
[12] | Wang J L, Hou X J, Jing Z J. Stripe and spot patterns in a Gierer Meinhardt activator-inhibitor model with different sources. Int J Bifurcat Chaos, 2015, 25(8): 108-155 |
[13] |
Wang J F, Wei J J, Shi J P. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J Diff Equ, 2016, 260(4): 3495-3523
doi: 10.1016/j.jde.2015.10.036 |
[14] | 叶其孝, 李正元, 王明新, 吴雅萍. 反应扩散方程引论. 北京: 科学出版社, 2011 |
Ye Q X, Li Z Y, Wang M X, Wu Y P. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 2011 | |
[15] |
Yi F Q, Wei J J, Shi J P. Diffusion-Driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal: Real World Appl, 2008, 9(3): 1038-1051
doi: 10.1016/j.nonrwa.2007.02.005 |
[16] |
Galkhar S, Negi K, Sahani S K. Effects of seasonal growth on ratio dependent delayed prey predator system. Commun Nonlinear Sci Numer Simul, 2009, 14(3): 850-862
doi: 10.1016/j.cnsns.2007.10.013 |
[17] |
Guan X N, Wang W M, Cai Y L. Spatiotemporal dynamics of a leslie-gower predator-prey model incorporating a prey refuge. Nonlinear Anal: Real World Appl, 2011, 12(4): 2385-2395
doi: 10.1016/j.nonrwa.2011.02.011 |
[18] |
Lee S S, Gaffney E A, Monk N A M. The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems. Bull Math Biol, 2010, 72(8): 2139-2160
doi: 10.1007/s11538-010-9532-5 |
[19] |
Dutta S, Ray D S. Effects of delay in a reaction-diffusion system under the influence of an electric field. Phys Rev E, 2008, 77(3): 036202
doi: 10.1103/PhysRevE.77.036202 |
[20] |
Ghosh P. Control of the Hopf-turing transition by time-delayed global feedback in a reaction-diffusion System. Phys Rev E, 2011, 84: 016222
doi: 10.1103/PhysRevE.84.016222 |
[21] |
Ghosh P, Sen S, Ray D S. Reaction-Cattaneo systems with fluctuating relaxation time. Phys Rev E, 2010, 81(2): 026205
doi: 10.1103/PhysRevE.81.026205 |
[22] |
Kyrychko Y, Blyuss K B, Hogan S J, et al. Control of spatiotemporal patterns in the Gray-Scott model. Chaos, 2009, 19(4): 043126
doi: 10.1063/1.3270048 |
[23] |
Sen S, Ghosh P, Syed S, et al. Time-Delay-Induced instabilities in reaction diffusion systems. Phys Rev E, 2008, 80(4): 046212
doi: 10.1103/PhysRevE.80.046212 |
[24] | Suleiman A L. Stability analysis of the Gierer-Meinhardt system with activator degradation. Dutse J Pure Appl Sci, 2016, 2(1): 48-54 |
[25] |
Li C C, Guo S J. Stability and bifurcation of a delayed reaction-diffusion model with robin boundary condition in heterogeneous environment. Int J Bifurcat Chaos, 2023, 33(2): 2350018
doi: 10.1142/S0218127423500189 |
[26] | Wen T T, Wang X L, Zhang G H. Hopf bifurcation in a two-species reaction-diffusion-advection competitive model with nonlocal delay. Commun Pur Appl Anal, 2023, 22(5): 1517-1544 |
[27] | Ma L, Wei D. Hopf bifurcation of a delayed reaction-diffusion model with advection term. Nonlinear Anal: An Inter Mult J, 2021, 212(2): 112455 |
[28] | 王雅迪, 袁海龙. 一类具有时滞的营养-微生物扩散模型的 Hopf 分支研究. 西南师范大学学报(自然科学版), 2023, 48(5): 1-13 |
Wang Y D, Yuan H L. Hopf bifurcation of a nutritional microbial diffusion model with time delay. Journal of Southwest Normal University (Natural Science Edition), 2023, 48(5): 1-13 | |
[29] |
Dong Y Y, Li S B, Zhang S L. Hopf bifurcation in a reaction-diffusion model with Degn-Harrison reaction scheme. Nonlinear Anal: Real World Appl, 2017, 33: 284-297
doi: 10.1016/j.nonrwa.2016.07.002 |
[30] | Lin X D, So J W H, Wu J H. Center manifolds for partial differential equations with delay. P Roy Soc Edinb A: Math, 1992, 122(3/4): 237-254 |
[31] | Wu J H. Theory and Applications of Partial Functional Differential Equations. New York: Springer-Verlag, 1996 |
[32] | 万阿英, 衣风岐, 郑立飞. 一类扩散的 Gierer-Meinhardt 的模型的振动模式和 Hopf 分支分析. 数学物理学报, 2015, 35A(2): 381-394 |
Wan A Y, Yi F Q, Zeng L F. Oscillating patterns and Hopf bifurcation analysis of a class of diffusion Gierer-Meinhardt models. Acta Math Sci, 2015, 35A(2): 381-394 |
[1] | 倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143. |
[2] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[3] | 梁青. 两类带 Markov 切换的随机比例泛函微分方程全局解的存在唯一性和稳定性[J]. 数学物理学报, 2025, 45(4): 1184-1205. |
[4] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[5] | 李雅芝, 刘利利, 田妍妮. 考虑扩散的SVEITR肺结核传播模型的最优控制策略[J]. 数学物理学报, 2025, 45(3): 934-945. |
[6] | 杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135. |
[7] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[8] | 肖江龙, 宋永利, 夏永辉. 一个扩散模型中恐惧效应与集群行为协同诱导的时空动力学研究[J]. 数学物理学报, 2024, 44(6): 1577-1594. |
[9] | 唐俊, 吴爱龙. 一类随机时滞非线性系统的事件触发控制[J]. 数学物理学报, 2024, 44(6): 1607-1616. |
[10] | 张咏雪, 贾文生. 有限理性下广义多目标多主多从博弈受控系统解的稳定性[J]. 数学物理学报, 2024, 44(6): 1689-1702. |
[11] | 杨红, 张晓光. 单纯复形上的随机 SIS 传染病模型[J]. 数学物理学报, 2024, 44(5): 1392-1399. |
[12] | 樊天娇, 冯立超, 杨艳梅. 不等式的推广以及在加性时变时滞系统中的应用[J]. 数学物理学报, 2024, 44(5): 1335-1351. |
[13] | 吴鹏, 方诚. 具有异质空间扩散的梅毒模型的阈值动力学分析与仿真[J]. 数学物理学报, 2024, 44(5): 1352-1367. |
[14] | 郭燕, 徐小川. 基于混合谱数据的不连续Sturm-Liouville逆谱问题局部可解性和稳定性[J]. 数学物理学报, 2024, 44(4): 859-870. |
[15] | 潘丽君, 吕顺, 翁莎莎. 耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性[J]. 数学物理学报, 2024, 44(4): 885-895. |
|